Invemar
Bulletin of Marine and Coastal Research

Evaluation in vitro of biofilm formation with marine bacteria from Colombian Caribbean

Sofia López Pérez, Sven Zea, Javier Gómez

Abstract


Biofilm formation is an important process for marine bacterial communities because this mechanism favors adaptation to variations in environmental conditions. The objective of this study was to evaluate the biofilm formation of bacteria isolated from marine sediments under in vitro conditions. For this, biofilm quantification assays were performed using two methods, violet crystal and reduction of the XTT dye; In addition, the viability of the bacteria was evaluated by Live / Dead staining. Subsequently, the strains evaluated were identified using the 16S RNA marker. The results showed that the isolates belong to the genus Bacillus, all in different ranges were able to form films
and strains B. safensis 64181 and Bacillus sp 64186 were selected which indicated greater production of this. Tests at different temperatures showed that for the strains selected the best temperature was 28 ° C. In addition, a mixed culture was carried out with these isolates, resulting
in differences in the density of the biofilm and less changes in its metabolic activity in temperature variation experiments. From the results we can infer that bacterial consortiums can favor resistance to environmental variations in biofilms formed by bacteria of the genus Bacillus.


Keywords


Marine Bacteria; Bacillus; Biofilms; Sediments

References


Allesen‐Holm Marie, Mikkel Klausen, Jeremy S. Webb, Staffan Kje (Martínez-Díaz & Arévalo-Ferro, 2010)lleberg, Søren Molin, Michael Givskov, y Tim Tolker‐Nielsen. (2006). A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Molecular Microbiology, 59, 114-1128.

Characklis, W. G., McFeters, G. A., y Marshall, K. C. (Eds.). (1990). Physiological ecology in biofilm systems. En Characklis WG, Marshall KC, eds. New York: John Wiley y Sons.

Cynthia B. Whitchurch, Paula C. Ragas, y John S. Mattick. (2002). Extracellular DNA Required for Bacterial BioÞlm Formation. Science, 295, 1487.

Díaz, A., J. Vivas, R. Puerta, L. Ahumedo, M. Arévalo, L. Cabrales, R. y Herrera, A. 2011. Biopelículas como expresión del mecanismo de quorum sensing: Una revisión. Avances en Periodoncia e Implantología Oral. Vol. 23, No. 3: 195-201.

Donlan M. Rodney. (2002, septiembre). Biofilms: Microbial Life on Surfaces. Emerging Infectious Diseases journal, 8(9). Recuperado de https://wwwnc.cdc.gov/eid/article/8/9/02-0063_article

Flemming, Hans-Curt, y Wingender, J. (2010). The Biofilm Matrix (Vol. 8). https://doi.org/10.1038/nrmicro2415

Flemming, H.-C., Neu, T. R., y Wozniak, D. J. (2007). The EPS Matrix: The «House of Biofilm Cells». Journal of Bacteriology, 189(22), 7945-7947. https://doi.org/10.1128/JB.00858-07

Hadfield, M., G. 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annual review of marine science. Vol. 3: 453-470.

Kolenbrander, E. Andersen, N. Blehert, S. Egland, G. Foster, S. Parmer, J. 2002. Communication among oral bacteria. Microbiology and Molecular Biology Review. Vol. 66: 486–505.

Kuramitsu, K. He, X. Lux, R. Anderson, H. Shi, Y. 2007. Interspecies interactions within oral microbial communities. Microbiology and Molecular Review. Vol. 71: 653–670.

Lau, S., C. Mak, K., K. Chen, F. y Qian, P., Y. 2002. Bioactivity of bacterial strains isolated from marine biofilms in Hong Kong waters for the induction of larval settlement in the marine polychaete Hydroides elegans. Marine Ecology Progress Series. Vol. 226: 301-310.

Leriche V., P. S. (2000). Use of an Enzyme-Linked Lectinsorbent Assay To Monitor the Shift in Polysaccharide Composition in Bacterial Biofilms, 66(5). Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC101422/

Martínez, S., y Acosta, A. (2016). Cambio temporal en la estructura de la comunidad coralina del área de santa marta - parque nacional natural tayrona (caribe colombiano). Bulletin of Marine and Coastal Research, 34. https://doi.org/10.25268/bimc.invemar.2005.34.0.239

Martínez-Díaz, J., y Arévalo-Ferro, C. (2010). Evaluación de un bioensayo para medir la inhibición de biopelículas bacterianas. Universidad Nacional de Colombia, 1-103.

Nazar, J. 2007. Biofilms bacterianos. Revista de otorrinolaringología y cirugía de cabeza y cuello. Vol. 67, No. 1: 161-172.

Nowak, M. Kurnatowski, P. 2009. Biofilm caused by fungistructure, quorum sensing, morphogenetic changes, resistance to drugs. Wiad Parazytol. Vol. 55, No. 1:19-25.

Rodriguez, R., A, Epifanio, C., E. 2000. Multiple cues for induction of metamorphosis in larvae of the common mud crab Panopeus herbstii. Marine Ecology. Vol. 195:221–229

Stepanović , S., Vuković, D., Dakic, I., Savic , B., y Svabic-Vlahovic, M. (2000). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. J Microbiol Methods., 175-179.

Surtherland. (2001). The biofilm matix- an immobilized but dynamic microbial environment. Trends in microbiology, 9(5), 2222-2227.


Full Text: PDF

DOI: 10.25268/bimc.invemar.2019.48.2.767

Refbacks

  • There are currently no refbacks.