Macroalgas rojas: una alternativa ecológica para la agricultura sostenible del Ecuador.

Autores/as

  • Angela Pacheco 1 Carrera de Biotecnología, Grupo de Investigaciones en Aplicaciones Biotecnológicas (GIAB); Universidad Politécnica Salesiana, Campus María Auxiliadora, Km 19.5 Vía a la Costa, P.O. Box 09-01-5863. Guayaquil, Ecuador
  • Estefany Lema Choez Centro de Investigaciones Biotecnologicas del Ecuador
  • Jaime Naranjo-Morán Universidad Politecnica Salesiana
  • Patricia Manzano Santana Centro de Investigaciones Biotecnologicas del Ecuador

DOI:

https://doi.org/10.25268/bimc.invemar.2024.53.2.1311

Palabras clave:

bioestimulantes, agroquímicos, metabolitos algales/macroalgales

Resumen

El empleo de compuestos bioactivos extraídos de macroalgas en forma de formulaciones agrícolas representa una tecnología emergente con gran potencial para reducir la dependencia de agroquímicos sintéticos. Al presente, los extractos de algas marinas se consideran
un recurso sostenible debido a su carácter biodegradable. En esta revisión se discute su potencial para reemplazar o reducir a una variedad de moléculas sintéticas en cultivos económicamente importantes, tales como fertilizantes sintéticos nitrogenados y fosfatados, reguladores del crecimiento hormonales sintéticos y plaguicidas organoclorados y organofosforados. Por la presencia de una extensa gama
de sustancias bioactivas ya registradas en ciertas algas se prevén como buenos candidatos para la producción de bioformulaciones vegetales.
En este sentido, el aprovechamiento comercial y biotecnológico de las macroalgas podría beneficiar la economía local. Sin embargo, pese
a todo el potencial de las algas existe muy poca información de su contenido metabolómico o químico total. Esta revisión bibliográfica
resume información que propone el uso de las macroalgas Kappaphycus. alvarezii, Acanthophora spicifera e Hypnea spinella dentro del
sector agrícola ecuatoriano como alternativa para la reducción de pesticidas.

Dimensions

PlumX

Visitas

139

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agarwal, P., M. Dangariya and P. Agarwal. 2021. Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defense. Algal Res., 58. https://doi.org/10.1016/j.algal.2021.102363

Alcántara, J.D. and N. Lázaro-Llanos. 2020. Mineral availability, dietary fiber contents, and short-chain fatty acid fermentation products of Caulerpa lentillifera and Kappaphycus alvarezii seaweeds. Komun. Kimika, 31(1), 1–10. https://doi.org/10.26534/kimika.v31i1.1-10

Ali, O., A. Ramsubhag and J. Jayaraman. 2021. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10(3): 1–27. https://doi.org/10.3390/plants10030531

Ali, O., A. Ramsubhag and J. Jayaraman. 2022. Transcriptome-wide modulation by Sargassum vulgare and Acanthophora spicifera extracts results in a prime-triggered plant signalling cascade in tomato and sweet pepper. AoB Plants, 14(6): 1–18. https://doi.org/10.1093/aobpla/plac046

Al-Shatri, A.H., N.M. Pakyürek and A. Yaviç. 2020. Effect of seaweed application on nutrient uptake of strawberry cv. Albion grown under the environmental conditions of northern Iraq. Appl. Ecol. Environ. Res., 18(1), 1267–1279. https://doi.org/10.15666/aeer/1801_12671279

Aminah, A. and G. K. Xiren. 2017. Proximate composition and total amino acid composition of Kappaphycus alvarezii found in the waters of Langkawi and Sabah, Malaysia. Int. Food Res. J., 24(3): 1255–1260.

Ammar, G., M. Ashour and S. M. Hassan. 2022. Enhancing potato production by applying commercial seaweed extract (TAM®) biostimulant under field conditions. JAAR, 27(3), 492-504. https://doi.org/10.21608/jalexu.2022.155031.1077

Ashour, M., S. M. Hassan, M. E. Elshobary, G. A. G. Ammar, A. Gaber, W. F. Alsanie, A. T. Mansour and R. El-shenody. 2021. Impact of commercial seaweed liquid extract (Tam®) biostimulant and its bioactive molecules on growth and antioxidant activities of hot pepper (Capsicum annuum). Plants, 10(6), 1–13. https://doi.org/10.3390/plants10061045

Augusto, A., T. Simões, R. Pedrosa and S. F. J. Silva. 2016. Evaluation of seaweed extracts functionality as post-harvest treatment for minimally processed Fuji apples. Innov. Food Sci. Emerg. Technol., 33, 589-595. https://doi.org/10.1016/j.ifset.2015.10.004

Banakar, S., N., M. K. Prasanna Kumar, H. B. Mahesh, P. B. Parivallal, M. E. Puneeth, C. Gautam, D. Pramesh, T. N. Shiva Kumara, T. R. Girish, S. Nori and S. S. Narayan. 2022. Red-seaweed biostimulants differentially alleviate the impact of fungicidal stress in rice (Oryza sativa L.). Scient. Rep., 12(1), 1–12. https://doi.org/10.1038/s41598-022-10010-8

Baskararaj, S., T. Panneerselvam, S. Govindaraj, S. Arunachalam, P. Parasuraman, S. R. K. Pandian, M. Sankaranarayanan, U. P. Mohan, P. Palanisamy, V. Ravishankar and S. Kunjiappan. 2020. Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy. 3 Biotech, 10(3): 1–18. https://doi.org/10.1007/s13205-020-2132-7

Brotosudarmo, T., H. Heriyanto, Y. Shioi, I. Indriatmoko, M. Setya, R. Indrawati and L. Limantara. 2018. Composition of the main dominant pigments from potential two edible seaweeds. Philipp J. Sci., 147(1): 47–55.

Cai, J. 2021. Global status of seaweed production, trade and utilization. Seaweed Innovation Forum Belize (28 May 2021). Available at: https://www.competecaribbean.org/wp-content/uploads/2021/05/Global-status-of-seaweed-production-trade-and-utilization-Junning-Cai-FAO.pdf

Cai, J., A. Lovatelli, J. Aguilar-Manjarrez, L. Cornish, L. Dabbadie, A. Desrochers, S. Diffey, E. Garrido Gamarro, J. Geehan, A. Hurtado, D. Lucente, G. Mair, W. Miao, P. Potin, C. Przybyla, M. Reantaso, , R. Roubach, M. Tauati and X. Yuan. 2021. Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. FAO Fish. Aquacult. Circ., 1229. FAO. https://doi.org/10.4060/cb5670en

Cokrowati, N., Y. Risjani, S. Andayani and M. Firdaus. 2023. Phytohormone quantification of Kappaphycus alvarezii at different cultivated ages. J. Penyuluh.Perikan. Kelaut., 28(1): 89–96.

Dash, A., D. Samant, D. K. Dash, S. N. Dash and K. N. Mishra. 2021. Influence of Ascophyllum nodosum extract, homobrassinolide and triacontanol on fruit retention, yield and quality of mango. J. Environ. Biol., 42(4), 1085–1091. https://doi.org/10.22438/jeb/42/4/MRN-1541

Dziugieł, T. and W. Wadas. 2020. Effect of plant biostimulants on macronutrient content in early crop potato tubers. Agronomy, 10(8), 1202. https://doi.

org/10.3390/agronomy10081202

Elsharkawy, G., A., H. A. H. Ibrahim, A. H. Salah, M. Akrami, H. M. Ali and D. Y. Abd-Elkader. 2021. Early and total yield enhancement of the globe

artichoke using an ecofriendly seaweed extract-based biostimulant and pk fertilizer. Agronomy, 11(9). https://doi.org/10.3390/agronomy11091819

Ertani, A., O. Francioso, A. Tinti, M. Schiavon, D. Pizzeghello and S. Nardi. 2018. Evaluation of seaweed extracts from Laminaria and Ascophyllum

nodosum spp. As biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front. Plant Sci. ,

(April). https://doi.org/10.3389/fpls.2018.00428

Espinosa-Antón, A., A., J. F. Zamora-Natera, P. Zarazúa-Villaseñor, F. Santacruz-Ruvalcaba, C. V. Sánchez-Hernández, E. Águila Alcántara, M. I. Torres-

Morán, A. P. Velasco-Ramírez and R. M. Hernández-Herrera. 2023. Application of seaweed generates changes in the substrate and stimulates the

growth of tomato plants. Plants, 12(7), 1520. https://doi.org/10.3390/plants12071520

FAO. 2022. Thinking about the future of food safety–A foresight report. FAO. https://doi.org/10.4060/cb8667en

Fatimah, S., H. Alimon and N. Daud. 2018. The effect of seaweed extract (Sargassum sp) used as fertilizer on plant growth of Capsicum annum (chilli)

and Lycopersicon esculentum (tomato). Indones. J. Sci. Technol., 3(2), 115–123. https://doi.org/10.17509/ijost.v3i2.12755

Flórez-Jalixto, M., D. Roldán-Acero, J. R. Omote-Sibina and A. Molleda-Ordóñez. 2021. Biofertilizers and biostimulantsfor agricultural and aquaculture

use: Bioprocesses applied to organic by-products of the fishing industry. Sci. Agropec., 12(4): 635-651. https://doi.org/10.17268/sci.agropecu.2021.067

Ganesan, M., R. Kannan, K. Rajendran, C. Govindasamy, P. Sampathkumar and L. Kannan. 1991. Trace metals distribution in seaweeds of the Gulf of

Mannar, Bay of Bengal. Mar. Pollut. Bull., 22(4): 205–207. https://doi.org/10.1016/0025-326X(91)90472-5

Gara, A. B., N. Hammami, R. Chaaben, A. El Feki, F. P. Pattie, K. Belghith and I. Dahech. 2022. Inhibition of key digestive enzymes related to diabetes

and protection of β -cell and liver- kidney functions by Hypnea spinella sulfated polysaccharide in diabetic rats. Res Sq.

González-Giro, Z., P. L. Batista-Corbal, Y. González-Pérez, E. Rodríguez-Leblanch y E. Marcos-Albear. 2018. Evaluación de la fitotoxicidad de un

extracto acuoso del alga Padina gymnospora (Kützing) sobre semillas de Lactuca sativa L. Biot. Veg., 18(3): 181–188.

Guillén, P. O., P. Motti, S. Mangelinckx, O. De Clerck, P. Bossier and S. Van Den Hende. 2022. Valorization of the chemical diversity of the tropical

red seaweeds Acanthophora and Kappaphycus and their applications in aquaculture: A review. Front. Mar. Sci., 9: 1–21. https://doi.org/10.3389/fmars.2022.957290

Hamzah, L., M., H. K. Hussein and F. K. M. Al-Waili. 2023. Response of sour orange seedlings to spraying with magnesium and seaweed extract Kelpak 40b. April. https://connectjournals.com/pages/articledetails/toc036548

Hassan, S., M., M. Ashour, N. Sakai, L. Zhang, H. A. Hassanien, A. Gaber and G. A. G. Ammarr. 2021. Impact of seaweed liquid extract biostimulant on growth, yield, and chemical composition of cucumber (Cucumis sativus). Agriculture, 11(4), 1–16. https://doi.org/10.3390/agriculture11040320

Illera-Vives, M., S. Seoane-Labandeira, M. Fernández-Labrada and M. E. López-Mosquera. 2020. Agricultural uses of seaweed. 591-612. En: Torres, M. D., S. Kraan and H. Dominguez (Eds). Sustainable seaweed technologies: cultivation, biorefinery, and applications. Elsevier, Lugo. 732 p. https://doi.org/10.1016/B978-0-12-817943-7.00020-2

Jiménez, J. y G. Torres. 2023. Diagnóstico de la maricultura en Ecuador: oportunidades y desafíos. AquaTechnica, 5(2), 134–155. https://doi.org/10.5281/zenodo.8411400

Karthikeyan, K. and M. Shanmugam. 2017. The effect of potassium-rich biostimulant from seaweed Kappaphycus alvarezii on yield and quality of cane and cane juice of sugarcane var. Co 86032 under plantation and ratoon crops. J. Appl. Psychol. , 29(6), 3245–3252. https://doi.org/10.1007/s10811-017-1211-6

Khan, W., U.P. Rayirath, S. Subramanian, M. N. Jithesh, P. Rayorath, D. M. Hodges, A. T. Critchley, J. S. Craigie, J. Norrie and B. Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul., 28(4): 386–399. https://doi.org/10.1007/s00344-009-9103-x

Klejdus, B., L. Lojková, M. Plaza, M. Šnóblová and D. Štěrbová. 2010. Hyphenated technique for the extraction and determination of isoflavones in algae: Ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. J. Cromatogr. A., 1217(51): 7956–7965. https://doi.org/10.1016/j.chroma.2010.07.020

Lawanyawut, K., S. Warotaipan and A. Kaewkong. 2002. Nutritional composition and Ca, P and Fe quantities of seaweed in Thailand. Fish. Sci., 68:1321–1322. https://www.jstage.jst.go.jp/article/fishsci1994/68/sup2/68_sup2_1321/_pdf

Layek, J., A. Das, R. G. Idapuganti, D. Sarkar, A. Ghosh, S. T. Zodape, R. Lal, G. S. Yadav, A. S, Panwar, S. Ngachan and R. S. Meena. 2018. Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. J. Appl. Phycol., 30(1): 547–558. https://doi.org/10.1007/s10811-017-1225-0

Leandro, A., D. Pacheco, J. Cotas, J. C. Marques, L. Pereira and A. M. M. Gonçalves. 2020. Seaweed’s bioactive candidate compounds to food industry and global food security. Life, 10(8). https://doi.org/10.3390/life10080140

Lema Ch., E., I. Chóez-Guaranda, O. Ruíz-Barzola, L. I. Jaramillo, A. Pacheco Flores de Valgaz, S. Van Den Hende y P. Manzano Santana. 2023. Estudio de la variabilidad en el tiempo y espacio de la actividad antioxidante y composición bioquímica de Kappaphycus alvarezii en diferentes densidades de siembra. Rev. Bionatura, 8(1): 1–11. https://doi.org/10.21931/rb/2023.08.01.13

Mantri, V. A., K. Eswaran, M. Shanmugam, M. Ganesan, V. Veeragurunathan, S. Thiruppathi, C. R. K. Reddy and A. Seth. 2017. An appraisal on commercial farming of Kappaphycus alvarezii in India: success in diversification of livelihood and prospects. J. Appl. Phycol., 29(1): 335–357. https://doi.org/10.1007/s10811-016-0948-7

Matos, G. S., S. G. Pereira, Z. A. Genisheva, A. M. Gomes, J. A. Teixeira and C. M. R. Rocha. 2021. Advances in extraction methods to recover addedvalue compounds from seaweeds: Sustainability and functionality. Foods, 10(3). https://doi.org/10.3390/foods10030516

Michalak, I., K. Chojnacka, A. Dmytryk, R. Wilk, M. Gramza and E. Rój. 2016. Evaluation of supercritical extracts of algae as biostimulants of plant growth in field trials. Front. Plant Sci., 7: 1-11. https://doi.org/10.3389/fpls.2016.01591

Mondal, D., A. Ghosh, K. Prasad, S. Singh, N. Bhatt, S. T. Zodape, J. P. Chaudhary, J. Chaudhari, P. B. Chatterjee, A. Seth and P. K. Ghosh. 2015. Elimination of gibberellin from Kappaphycus alvarezii seaweed sap foliar spray enhances corn stover production without compromising the grain yield advantage. Plant Growth Regul., 75(3): 657–666. https://doi.org/10.1007/s10725-014-9967-z

Montúfar-Romero, M., R. E. Rincones-León, L. B. Cáceres-Farías, M. M. Espinoza-Vera, U. Avendaño, T. Cruz-Jaime, L. Cubillos, W. Ruiz, W. Revelo, C. Lodeiros, A. Alfaro-Núñez and L. Cáceres-FarÍas. 2023. Feasibility of aquaculture cultivation of elkhorn sea moss (Kappaphycus alvarezii) in a horizontal long line in the Tropical Eastern Pacific. Sci. Rep. , 13(1), 14751. https://doi.org/10.1038/s41598-023-41795-x

Mukherjee, A. and J. S. Patel. 2020. Seaweed extract: biostimulator of plant defense and plant productivity. Int. J. Environ. Sci. Technol., 17(1), 553–558. https://doi.org/10.1007/s13762-019-02442-z

Murillo Carvajal, R. y R. Romo González. 2021. Diseño de una planta piloto basado en la extracción de bioestimulantes de la macroalga Kappaphycus alvarezii con aplicación al sector agrícola. Tesis Ing. Quim., Esc. Sup. Politécn. Lit., Guayaquil. 60 p. https://www.dspace.espol.edu.ec/bitstream/123456789/52070/3/T-110225 MURILLO Y ROMO.pdf

Murugaiyan, K. 2020. Seasonal studies on the carbohydrate content of some marine macroalgae in Gulf of Mannar coastal region, India. Trop. Plant Res., 7(3): 684–688. https://doi.org/10.22271/tpr.2020.v7.i3.086

Noli, Z., A., Suwirmen, Aisyah and P. Aliyyanti. 2021). Effect of liquid seaweed extracts as biostimulant on vegetative growth of soybean. IOP Conf. Ser. Earth Environ. Sci., 759(1). https://doi.org/10.1088/1755-1315/759/1/012029

Pandya, M. and S. Mehta. 2023. Seaweed utilizing as a biostimulants in agriculture sector: a review. Int. J. Res. Appl., 11(3): 927–934. https://doi.org/10.22214/ijraset.2023.49561

Patel, K., P. Agarwal and P. K. Agarwal. 2018. Kappaphycus alvarezii sap mitigates abiotic-induced stress in Triticum durum by modulating metabolic coordination and improves growth and yield. J. Appl. Phycol., 30(4): 2659–2673. https://doi.org/10.1007/s10811-018-1423-4

Pedro, S. F., K. S. Franco Jr, V. M. Ribeiro y G. P. Brigante. 2022. Efeitos do fertilizante a base de extratos de algas marinhas no crescimento inicial do cafeeiro. Res. Soc. Dev., 11(17): e79111738844. https://doi.org/10.33448/rsd-v11i17.38844

Pérez-Madruga, Y., I. López-Padrón e Y. Reyes-Guerrero. 2020. Las algas como alternativa natural para la producción de diferentes cultivos. Cult. Trop.,41(2): 9. http://ediciones.inca.edu.cu

Pramanick, B., K. Brahmachari, B. S. Mahapatra, A. Ghosh, D. Ghosh and S. Kar. 2017. Growth, yield and quality improvement of potato tubers through the application of seaweed sap derived from the marine alga Kappaphycus alvarezii. J. Appl. Phycol., 29(6): 3253–3260. https://doi.org/10.1007/s10811-017-1189-0

Raju, G., S. Kohila and K. Ramachandiran. 2017. Evaluating the effect of seaweed formulations on the quality and yield of sugarcane. Madras Agric. J.,104(4–6): 4–9. https://doi.org/10.29321/MAJ.04.000423

Ramu Ganesan, A., K. Subramani, M. Shanmugam, P. Seedevi, S. Park, A. H. Alfarhan, R. Rajagopal and B. Balasubramanian. 2020. A comparison of nutritional value of underexploited edible seaweeds with recommended dietary allowances. J. King Saud Univ. Sci., 32(1): 1206–1211. https://doi.org/10.1016/j.jksus.2019.11.009

Rana, V., S., K. Lingwal, S. Sharma, N. Rana, R. Pawar, V. Kumar and U. Sharma. 2023. Enhancement in growth, yield and nutritive characteristics of strawberry (Fragaria × ananassa Duch.) by the application of biostimulant: seaweed extract. Acta Physiol. Plant., 45(10): 1–12. https://doi. org/10.1007/s11738-023-03602-y

Ravi, I., K. Kamaraju1, S. Kumar and S. Sailaja Nori. 2018. Foliar application of seaweed bio formulation enhances growth and yield of banana cv. grand naine (AAA). IJONS, 8(47): 13482–13488.

Reka, P., A. Thahira Banu and M. Seethalakshmi. 2017. Elemental composition of selected edible seaweeds using SEM- energy dispersive spectroscopic analysis. Int. Food Res. J., 24(2): 600–606.

Rodriguez Tenorio, P. A., L. Méndez-Rodríguez, E. Serviere-Zaragoza, T. Hara and T. Zenteno-Savín. 2013. Antioxidant substances and trace element content in macroalgae from a subtropical lagoon in the west coast of the Baja California Peninsula. Vitam. Trace Elem., 2(1): 1–5. https://doi.org/10.4172/2167-0390.1000108

Rouphael, Y. and G. Colla. 2020. Editorial: Biostimulants in agriculture. Front. Plant Sci. , 11(February), 1–7. https://doi.org/10.3389/fpls.2020.00040

Rouphael, Y., M. Giordano, M. Cardarelli, E. Cozzolino, M. Mori, M. C. Kyriacou, P. Bonini and G. Colla. 2018. Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy, 8(7), 1–15. https://doi.org/10.3390/agronomy8070126

Roy, A., D. Ghosh, M. Kasera, T. R. Girish, S. Nori, R. S. Vemanna, S. Mohapatra, S. S. Narayan and S. Bhattacharjee. 2022. Kappaphycus alvareziiderived formulations enhance salicylic acid-mediated anti-bacterial defenses in Arabidopsis thaliana and rice. J. Appl. Phycol., 34(1): 679–695. https://doi.org/10.1007/s10811-021-02658-y

Rudke, A. R., C. J. de Andrade and S. R. S. Ferreira. 2020. Kappaphycus alvarezii macroalgae: An unexplored and valuable biomass for green biorefinery conversion. Trends Food Sci. Technol., 103: 214–224. https://doi.org/10.1016/j.tifs.2020.07.018

Ruiz-Medina, M. A., M. Sansón and A. M. González-Rodríguez. 2022. Changes in antioxidant activity of fresh marine macroalgae from the Canary Islands during air-drying process. Algal Res., 66, 102798. https://doi.org/10.1016/j.algal.2022.102798

Samuels, L. J., M. E. Setati and E. H. Blancquaert. 2022. Towards a better understanding of the potential benefits of seaweed based biostimulants in Vitis vinifera L. cultivars. Plants, 11(3), 348. https://doi.org/10.3390/plants11030348

Seo, U., H. Kang, K. Yoon and Y. An. 2019. Analysis of dietary fiber, mineral content and fatty acid composition in Cheonggak (Codium fragile). Korean J. Food Nutr., 32(4): 328–334. https://doi.org/doi.org/10.9799/ksfan.2019.32.4.328.

Shah, M. T., S. T. Zodape, D. R. Chaudhary, K. Eswaran and J. Chikara. 2013. Seaweed sap as an alternative liquid fertilizer for yield and quality improvement of wheat. J. Plant Nutr. , 36(2), 192–200. https://doi.org/10.1080/01904167.2012.737886

Shukla, P. S., T. Borza, A. T. Critchley and B. Prithiviraj. 2021. Seaweed-based compounds and products for sustainable protection against plant pathogens. Mar. Drugs, 19(2): 59. https://doi.org/10.3390/md19020059

Shukla, P. S., N. Nivetha, S. S. Nori, D. Bose, S. Kumar, S. Khandelwal, A. Critchley and S. Suryanarayan. 2023. Understanding the mode of action of AgroGain®, a biostimulant derived from the red seaweed Kappaphycus alvarezii in the stimulation of cotyledon expansion and growth of Cucumis sativa (cucumber). Front. Plant Sci., 14(April), 1–16. https://doi.org/10.3389/fpls.2023.1136563

Sithamparanathan S., W. K. Balasooriya, S. J. Arasakesary and N. Gnanavelrajah. 2019. Effect of seaweed extract (Kappaphycus alvarezii) on the growth, yield and nutrient uptake of leafy vegetable Amaranthus polygamous. Trop. Agric. Res., 30(3): 81. https://doi.org/10.4038/tar.v30i3.8321

Suresh Kumar, K., K. Ganesan and P. V. Subba Rao. 2015. Seasonal variation in nutritional composition of Kappaphycus alvarezii (Doty) Doty—an edible seaweed. J. Food Sci. Technol., 52(5): 2751–2760. https://doi.org/10.1007/s13197-014-1372-0

Tabet, E., R. Al-Haf, C. Hosri, Z. Zind, L. Farah and D. Darazy. 2021. The effect of fertigation and foliar application of seaweed’s biostimulant on banana yield. Agric. Sci., 3(1), p1. https://doi.org/10.30560/as.v3n1p1

Udayan, A., S. Kathiresan and M. Arumugam. 2018. Kinetin and gibberellic acid (GA3) act synergistically to produce high value polyunsaturated fatty acids in Nannochloropsis oceanica CASA CC201. Algal Res., 32: 182–192. https://doi.org/10.1016/j.algal.2018.03.007

Uju, N. P. S. U. K. Dewi, J. Santoso, I. Setyaningsih, S. D. Hardingtyas and Yopi. 2020. Extraction of phycoerythrin from Kappaphycus alvarezii seaweed using ultrasonication. IOP Conf. Ser.: Earth Environ. Sci., 414(1). 012028. https://doi.org/10.1088/1755-1315/414/1/012028

Vaghela, P., K. Trivedi, K. G. V. Anand, H. Brahmbhatt, J. Nayak, K. Khandhediya, K. Prasad, K. Moradiya, D. Kubavat, L. J. Konwar, V. Veeragurunathan, P. G. Grace and A. Ghosh. 2023. Scientific basis for the use of minimally processed homogenates of Kappaphycus alvarezii (red) and Sargassum wightii (brown) seaweeds as crop biostimulants. Algal Res., 70. 102969. https://doi.org/10.1016/j.algal.2023.102969

Valverde-Balladares, P. y H. D. Armas. 2023. Potencial nutracéutico de macroalgas marina–Ecuador. FACSalud UNEMI, 6(11): 42–52.

Veerman, C., T. Pinto Correia and C. Bastioli. 2020. Caring for soil is caring for life: ensure 75 % of soils are healthy by 2030 for food, people, nature and climat. European Commission, Directorate-General for Research and Innovation. Rep. Mission Board Soil Health Food, Publ. Off., Brussels.82 p. https://data.europa.eu/doi/10.2777/821504

Zakaria, N. A., D. Ibrahim, S. F. Sulaiman and A. Supardy. 2011. Assessment of antioxidant activity, total phenolic content and invitro toxicity of Malaysian red seaweed, Acanthophora spicifera. J. Chem. Pharm. Res., 3(1): 675–684.

Zodape, S., T., A. Gupta, S. C. Bhandari, U. S. Rawat, D. R. Chaudhary, K. Eswaran and J. Chikara. 2011. Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.). J. Sci. Ind. Res. , 70(3): 215–219.

Mecanismos de acción de los extractos de algas.

Descargas

Publicado

2024-07-02

Cómo citar

1.
Pacheco A, Lema Choez E, Naranjo-Morán J, Manzano Santana P. Macroalgas rojas: una alternativa ecológica para la agricultura sostenible del Ecuador. Bol. Investig. Mar. Costeras [Internet]. 2 de julio de 2024 [citado 7 de septiembre de 2024];53(2):143-68. Disponible en: http://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1311
سرور مجازی ایران Decentralized Exchange

Número

Sección

Articulos de revisión
فروشگاه اینترنتی