Vol. 52 Núm. 1 (2023)
Articulos de investigación

Sobrevivencia y respuestas fisiológicas de corales expuestos a elevada turbidez en el arrecife Varadero, Caribe colombiano

Tomás López-Londoño
Universidad Estatal de Pensilvania
Kelly Gómez-Campo
Universidad Estatal de Pensilvania
Claudia T. Galindo-Martínez
Universidad Estatal de Pensilvania
Luis A. González-Guerrero
Universidad Estatal de Pensilvania
Sofia Roitman
Universidad Estatal de Pensilvania
F. Joseph Pollock
The Nature Conservancy
Valeria Pizarro
Perry Institute for Marine Science
Mateo López-Victoria
Pontificia Universidad Javeriana
Mónica Medina
Universidad Estatal de Pensilvania
Roberto Iglesias-Prieto
Universidad Estatal de Pensilvania

Publicado 2023-06-15

Palabras clave

  • Varadero,
  • Canal del Dique,
  • Corales simbióticos,
  • Propiedades ópticas,
  • Trasplante recíproco

Cómo citar

1.
López-Londoño T, Gómez-Campo K, Galindo-Martínez CT, González-Guerrero LA, Roitman S, Pollock FJ, et al. Sobrevivencia y respuestas fisiológicas de corales expuestos a elevada turbidez en el arrecife Varadero, Caribe colombiano. Bol. Investig. Mar. Costeras [Internet]. 15 de junio de 2023 [citado 13 de mayo de 2025];52(1):135-58. Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1192

Resumen

El deterioro de las propiedades ópticas del agua, o aumento de turbidez, debido a perturbaciones antropogénicas es un fenómeno
generalizado en zonas costeras. Los efectos sobre el ambiente lumínico submarino y la fisiología de corales simbióticos, que
dependen principalmente de la luz para sobrevivir y mantener elevada calcificación, han sido poco explorados. En este estudio
se describen los efectos de la pluma del Canal del Dique sobre el ambiente lumínico, sobrevivencia y fisiología de corales en el arrecife
Varadero. Se realizó un trasplante recíproco con fragmentos de Orbicella faveolata entre una zona somera en Varadero (3.5 m) y un sitio contrastante con aguas más claras a mayor profundidad (12 m) con intensidad de luz comparable. La columna de agua en Varadero se  encontró fuertemente estratificada, favoreciendo el aislamiento del arrecife de la pluma. Corales trasplantados a Varadero mostraron mayor sobrevivencia posiblemente debido a reducción de estrés lumínico y mayor heterotrofía. Su fisiología indicó aclimatación a poca luz y limitado potencial autotrófico, evidenciando un riesgo para la sobrevivencia de corales a mayor profundidad. Los resultados indican que un mayor deterioro de las propiedades ópticas del agua en la bahía de Cartagena por perturbaciones antropogénicas en la cuenca del río Magdalena y en la zona costera pone en riesgo la prevalencia del arrecife Varadero.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Anthony, K.R.N. and K.E. Fabricius. 2000. Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J. Exp. Mar. Biol. Ecol., 252: 221-253.
  2. Anthony, K.R.N., P.V. Ridd, A.R. Orpin, P. Larcombe and J. Lough. 2004. Temporal variation of light availability in coastal benthic habitats: effects of clouds, turbidity, and tides. Limnol. Oceanogr., 49: 2201-2211. https://doi.org/10.4319/lo.2004.49.6.2201
  3. Canto, M.M., K.E. Fabricius, M. Logan, S. Lewis, L.I.W. McKinna and B.J. Robson. 2021. A benthic light index of water quality in the Great Barrier Reef, Australia. Mar. Pollut. Bull., 169: 112539. https://doi.org/10.1016/j.marpolbul.2021.112539
  4. Colombo-Pallotta, M.F., A. Rodríguez-Román and R. Iglesias-Prieto. 2010. Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs, 29: 899-907.
  5. Díaz, J.M., L.M. Barrios, J. Garzón-Ferreira, J. Geister, M. López-Victoria, G.H. Ospina, F. Parra-Velandia, J. Pinzón, B. Vargas-Ángel, F.A. Zapata y S. Zea. 2000. Áreas coralinas de Colombia. Instituto de Investigaciones Marinas y Costeras. Santa Marta. 175 p.
  6. Dubinsky, Z., N. Stambler, M. Benzion, L.R. Mccloskey, L. Muscatine and P.G. Falkowski. 1990. The effect of external nutrient resources on the opticalproperties and photosynthetic efficiency of Stylophora-Pistillata. Proc. R. Soc. Lond. B, 239: 231-246. https://doi.org/10.1098/rspb.1990.0015.
  7. Enríquez, S., E.R. Méndez and R. Iglesias-Prieto. 2005. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr., 50: 1025-1032. https://doi.org/10.4319/lo.2005.50.4.1025
  8. Fabricius, K.E. 2011. Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. 493-505. En: Dubinsky, Z. and N. Stambler (Eds.). Coral Reefs: An ecosystem in transition. Springer Netherlands. Dordrecht. https://doi.org/10.1007/978-94-007-0114-4_28
  9. Falkowski, P.G., Z. Dubinsky, L. Muscatine and J.W. Porter. 1984. Light and the bioenergetics of a symbiotic coral. Bioscience, 34: 705-709. https://doi.org/10.2307/1309663
  10. Fisher, R., P. Bessell-Browne and R. Jones. 2019. Synergistic and antagonistic impacts of suspended sediments and thermal stress on corals. Nat. Comm.,10: 2346.
  11. Gattuso, J.P., B. Gentili, C.M. Duarte, J.A. Kleypas, J.J. Middelburg and D. Antoine. 2006. Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences, 3: 489-513. https://doi.org/10.5194/bg-3-489-2006
  12. Henao-Castro, A. 2013. Efectos de los aportes del Canal del Dique sobre el reclutamiento de especies de coral en los arrecifes del archipiélago Nuestra Señora del Rosario, área marina protegida. Tesis Magister Ciencias Marinas, Univ. Jorge Tadeo Lozano, Bogotá D.C. 125 p.
  13. Hereford, J. 2009. A quantitative survey of local adaptation and fitness trade-offs. Am. Nat., 173: 579-588.
  14. Hoegh-Guldberg, O. and R.J. Jones. 1999. Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar. Ecol. Prog. Ser., 183: 73-86. https://doi.org/10.3354/meps183073
  15. Hoegh-Guldberg, O., P.J. Mumby, A.J. Hooten, R.S. Steneck, P. Greenfield, E. Gomez, C.D. Harvell, P.F. Sale, A.J. Edwards, K. Caldeira, N. Knowlton, C.M. Eakin, R. Iglesias-Prieto, N. Muthiga, R.H. Bradbury, A. Dubi and M.E. Hatziolos. 2007. Coral reefs under rapid climate change and ocean acidification. Science, 318: 1737-1742.
  16. Hoogenboom, M., R. Rodolfo-Metalpa and C. Ferrier-Pagès. 2010. Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J. Exp. Biol., 213: 2399-2409.
  17. Iglesias-Prieto, R. and R.K. Trench. 1994. Acclimation and adaptation to irradiance in symbiotic dinoflagellates .1. Responses of the photosynthetic unit to changes in photon flux-density. Mar. Ecol. Prog. Ser., 113: 163-175. https://doi.org/10.3354/meps113163
  18. Iglesias-Prieto, R., V.H. Beltrán, T.C. LaJeunesse, H. Reyes-Bonilla and P.E. Thomé. 2004. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc. R. Soc. Lond. B, 271: 1757-1763. https://doi.org/10.1098/rspb.2004.2757
  19. Jackson, J., M. Donovan, K. Cramer and V. Lam. 2014. Status and trends of Caribbean coral reefs: 1970-2012. Global Coral Reef Monitoring Network, IUCN. Switzerland. 304 p.
  20. Jeffrey, S.W. and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher-plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz., 167: 191-194.
  21. Junjie, R.K., N.K. Browne, P.L.A. Erftemeijer and P.A. Todd. 2014. Impacts of sediments on coral energetics: partitioning the effects of turbidity and settling particles. PLoS ONE, 9: https://doi.org/10.1371/journal.pone.0107195
  22. Kahng, S.E., D. Akkaynak, T. Shlesinger, E.J. Hochberg, J. Wiedenmann, R. Tamir and D. Tchernov. 2019. Light, temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems: 801-828. In: Loya, Y., K.A. Puglise and T.C.L. Bridge (Eds.) Mesophotic coral ecosystems. Springer. Cham. https://doi.org/10.1007/978-3-319-92735-0_42
  23. Kemp, D.W., D.J. Thornhill, R.D. Rotjan, R. Iglesias-Prieto, W.K. Fitt and G.W. Schmidt. 2015. Spatially distinct and regionally endemic Symbiodinium assemblages in the threatened Caribbean reef-building coral Orbicella faveolata. Coral Reefs, 34: 535-547. https://doi.org/10.1007/s00338-015-1277-z
  24. Kirk, J.T.O. 2011. Light and photosynthesis in aquatic ecosystems. Cambridge University Press. New York. 649 p.
  25. Kleypas, J.A., J.W. McManus and L.A.B. Meñez. 1999. Environmental limits to coral reef development: where do we draw the line? Amer. Zool., 39: 146-159. https://doi.org/10.1093/icb/39.1.146
  26. Koop, K., D. Booth, A. Broadbent, J. Brodie, D. Bucher, D. Capone, J. Coll, W. Dennison, M. Erdmann, P. Harrison, O. Hoegh-Guldberg, P. Hutchings, G.B. Jones, A.W.D. Larkum, J. O’Neil, A. Steven, E. Tentori, S. Ward, J. Williamson and D. Yellowlees. 2001. ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar. Pollut. Bull., 42: 91-120.
  27. Lonin, S., C. Parra, C. Andrade e Y. Thomas. 2004. Patrones de la pluma turbia del canal del Dique en la bahía de Cartagena. Bol. Cient. CIOH, 22: 77-89.
  28. López-Londoño, T., C.T. Galindo-Martínez, K. Gómez-Campo, L.A. González-Guerrero, S. Roitman, F.J. Pollock, V. Pizarro, M. López-Victoria, M. Medina and R. Iglesias-Prieto. 2021. Physiological and ecological consequences of the water optical properties degradation on reef corals. Coral Reefs, 40: 1243-1256. https://doi.org/10.1007/s00338-021-02133-7
  29. López-Londoño, T., K. Gómez-Campo, X. Hernández-Pech, S. Enríquez and R. Iglesias-Prieto. 2022. Photosynthetic usable energy explains vertical patterns of biodiversity in zooxanthellate corals. Sci. Rep., 12: 20821. https://doi.org/10.1038/s41598-022-25094-5
  30. Lopez-Victoria, M., M. Rodríguez-Moreno and F.A. Zapata. 2015. A paradoxical reef from Varadero, Cartagena Bay, Colombia. Coral Reefs, 34: 231.
  31. Marsh, J.A. 1970. Primary productivity of reef-building calcareous red algae. Ecology, 51: 255-263. https://doi.org/10.2307/1933661
  32. Molares, R. and M. Mestres. 2012. Effects of fluctuating river discharge on the water exchange mechanism of a semi-enclosed micro-tidal bay: Cartagena Bay, Colombia. Bol. Cient. CIOH, 30: 53-74.
  33. Morgan, K.M., C.T. Perry, J.A. Johnson and S.G. Smithers. 2017. Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Front. Mar. Sci., 4: 224.
  34. Mumby, P.J., A. Hastings and H.J. Edwards. 2007. Thresholds and the resilience of Caribbean coral reefs. Nature, 450: 98-101. https://doi.org/10.1038/ nature06252
  35. Osinga, R., R. Iglesias-Prieto and S. Enríquez. 2012. Measuring photosynthesis in symbiotic invertebrates: a review of methodologies, rates and processes: 229-256. In: Najafpour, M. (Ed.). Applied photosynthesis. InTech.
  36. Pandolfi, J.M. and A.F. Budd. 2008. Morphology and ecological zonation of Caribbean reef corals: the Montastraea ‘annularis’ species complex. Mar. Ecol. Prog. Ser., 369: 89-102.
  37. Pizarro, V., S.C. Rodríguez, M. López-Victoria, F.A. Zapata, S. Zea, C.T. Galíndo-Martínez, R. Iglesias-Prieto, J. Pollock and M. Medina. 2017. Unraveling the structure and composition of Varadero Reef, an improbable and imperiled coral reef in the Colombian Caribbean. Peerj, 5: https://doi.org/10.7717/peerj.4119
  38. Pollock, F.J., J.B. Lamb, S.N. Field, S.F. Heron, B. Schaffelke, G. Shedrawi, D.G. Bourne and B.L. Willis. 2014. Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. PLoS ONE, 9: https://doi.org/10.1371/journal.pone.0102498
  39. R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  40. Restrepo, J.D. and E.M. Alvarado. 2011. Assessing major environmental issues in the Caribbean and Pacific coasts of Colombia, South America: an overview of fluvial fluxes, coral reef degradation, and mangrove ecosystems impacted by river diversion: 289-314. In: Wolanski, E. and D.S. McLusky (Eds.) Treatise on estuarine and coastal science. Elsevier
  41. Restrepo, J.D., P. Zapata, J.A. Díaz, J. Garzón-Ferreira and C.B. García. 2006. Fluvial fluxes into the Caribbean Sea and their impact on coastal ecosystems: The Magdalena River, Colombia. Glob. Planet. Change, 50: 33-49.
  42. Restrepo, J.D., E. Park, S. Aquino and E.M. Latrubesse. 2016. Coral reefs chronically exposed to river sediment plumes in the southwestern Caribbean: Rosario Islands, Colombia. Sci. Total Environ., 553: 316-329. https://doi.org/10.1016/j.scitotenv.2016.02.140
  43. Restrepo, J.D., R. Escobar and M. Tosic. 2018. Fluvial fluxes from the Magdalena River into Cartagena Bay, Caribbean Colombia: Trends, future scenarios, and connections with upstream human impacts. Geomorphology, 302: 92-105. http://dx.doi.org/10.1016/j.geomorph.2016.11.007
  44. Rogers, C.S. 1990. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser., 62: 185-202.
  45. Roitman, S., T. López-Londoño, F.J. Pollock, K.B. Ritchie, C.T. Galindo-Martínez, K. Gómez-Campo, L.A. González-Guerrero, V. Pizarro, M. López-Victoria, R. Iglesias-Prieto and M. Medina. 2020. Surviving marginalized reefs: assessing the implications of the microbiome on coral physiology and survivorship. Coral Reefs, 39: 795-807. https://doi.org/10.1007/s00338-020-01951-5
  46. Rowan, R., N. Knowlton, A. Baker and J. Jara. 1997. Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature, 388: 265-269. https://doi.org/10.1038/40843
  47. Scheufen, T., R. Iglesias-Prieto and S. Enríquez. 2017a. Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front Mar Sci, 4: 309. https://doi.org/10.3389/fmars.2017.00309
  48. Scheufen, T., W.E. Kramer, R. Iglesias-Prieto and S. Enríquez. 2017b. Seasonal variation modulates coral sensibility to heat-stress and explains annual changes in coral productivity. Sci. Rep., 7: 4937. https://doi.org/10.1038/s41598-017-04927-8
  49. Shantz, A.A. and D.E. Burkepile. 2014. Context-dependent effects of nutrient loading on the coral-algal mutualism. Ecology, 95: 1995-2005. https://doi.org/10.1890/13-1407.1
  50. Sheskin, D.J. 2003. Handbook of parametric and nonparametric statistical procedures. Chapman and Hall/CRC.
  51. Spalding, M., L. Burke, S.A. Wood, J. Ashpole, J. Hutchison and P. Ermgassen. 2017. Mapping the global value and distribution of coral reef tourism. Mar. Pol., 82: 104-113. https://doi.org/10.1016/j.marpol.2017.05.014
  52. Sutherland, K.P., J.W. Porter, J.W. Turner, B.J. Thomas, E.E. Looney, T.P. Luna, M.K. Meyers, J.C. Futch and E.K. Lipp. 2010. Human sewage identified as likely source of white pox disease of the threatened Caribbean elkhorn coral, Acropora palmata. Environ. Microbiol., 12: 1122-1131. https://doi.org/10.1111/j.1462-2920.2010.02152.x
  53. Tosic, M., J.D. Restrepo, S. Lonin, A. Izquierdo and F. Martins. 2019. Water and sediment quality in Cartagena Bay, Colombia: seasonal variability and potential impacts of pollution. Estuar. Coast. Shelf Sci., 216: 187-203.
  54. van Woesik, R., P. Houk, A.L. Isechal, J.W. Idechong, S. Victor and Y. Golbuu. 2012. Climate-change refugia in the sheltered bays of Palau: analogs of future reefs. Ecol. Evol., 2: 2474-2484.
  55. Vásquez-Elizondo, R.M., L. Legaria-Moreno, M.A. Pérez-Castro, W.E. Kramer, T. Scheufen, R. Iglesias-Prieto and S. Enríquez. 2017. Absorptance determinations on multicellular tissues. Photosynth. Res., 132: 311-324. https://doi.org/10.1007/s11120-017-0395-6
  56. Vega Thurber, R.L., D.E. Burkepile, C. Fuchs, A.A. Shantz, R. McMinds and J.R. Zaneveld. 2014. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Chang. Biol., 20: 544-554.
  57. Vermeij, M.J.A. and R.P.M. Bak. 2002. How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar. Ecol. Prog. Ser., 233: 105-116. https://doi.org/10.3354/meps233105
  58. Wagner, D.E., P. Kramer and R. van Woesik. 2010. Species composition, habitat, and water quality influence coral bleaching in southern Florida. Mar. Ecol. Prog. Ser., 408: 65-78.
  59. Warner, M.E., G.C. Chilcoat, F.K. McFarland and W.K. Fitt. 2002. Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea. Mar. Biol., 141: 31-38. https://doi.org/10.1007/s00227-002-0807-8
  60. Warner, M.E., T.C. LaJeunesse, J.D. Robison and R.M. Thur. 2006. The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol. Oceanogr., 51: 1887-1897. https://doi.org/10.4319/lo.2006.51.4.1887
  61. Weber, M., D. de Beer, C. Lott, L. Polerecky, K. Kohls, R.M.M. Abed, T.G. Ferdelman and K.E. Fabricius. 2012. Mechanisms of damage to corals exposed to sedimentation. Proc. Natl. Acad. Sci. USA, 109: https://doi.org/10.1073/pnas.1100715109
  62. Weil, E. and N. Knowlton. 1994. A multi-character analysis of the Caribbean coral Montastraea annularis (Ellis and Solander, 1786) and its two sibling species, M. faveolata (Ellis and Solander, 1786) and M. franksi (Gregory, 1895). Bull. Mar. Sci., 55: 151-175.
  63. Yentsch, C.S., C.M. Yentsch, J.J. Cullen, B. Lapointe, D.A. Phinney and S.W. Yentsch. 2002. Sunlight and water transparency: cornerstones in coral research. J. Exp. Mar. Biol. Ecol., 268: 171-183.
  64. Zaneveld, J.R., D.E. Burkepile, A.A. Shantz, C.E. Pritchard, R. McMinds, J.P. Payet, R. Welsh, A.M.S. Correa, N.P. Lemoine, S. Rosales, C. Fuchs, J.A. Maynard and R.V. Thurber. 2016. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun., 7: 11833. https://doi.org/10.1038/ncomms11833