Vol. 54 Núm. 2 (2025)
Articulos de investigación

Investigación de la subsidencia antropogénica en Fremantle, Australia Occidental, mediante GPS, altimetría por satélite y datos de mareógrafos

Alberto Boretti
independent scientist

Publicado 2025-07-01

Palabras clave

  • Teledetección,
  • Sistema de Posicionamiento Global (GPS),
  • Mareógrafos,
  • Nivel del mar relativo,
  • Nivel del mar absoluto

Cómo citar

1.
Boretti A. Investigación de la subsidencia antropogénica en Fremantle, Australia Occidental, mediante GPS, altimetría por satélite y datos de mareógrafos. Bol. Investig. Mar. Costeras [Internet]. 1 de julio de 2025 [citado 18 de noviembre de 2025];54(2):100-33. Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1356

Resumen

La subsidencia antropogénica contribuye al aumento relativo del nivel del mar (RSLR) en ciudades costeras, causada por extracción de agua subterránea, minería y carga de infraestructuras. Este estudio analiza Fremantle, integrando datos de mareógrafos, GPS y altimetría satelital para evaluar la velocidad y aceleración del RSLR con ajustes lineales y parabólicos, capturando efectos eustáticos climáticos y subsidencia local. Los datos de GPS muestran una subsidencia de 1,56 mm/año en Fremantle; las tendencias históricas se derivan de modelos de Ajuste Isostático Glacial (GIA). Corregida la subsidencia, la velocidad del aumento absoluto del nivel del mar
(ASLR) es mínima (+0,16 mm/año) con aceleración negativa (-0,0103 mm/año²). Un análisis de 153 registros globales de mareógrafos muestra correlación entre altas tasas de RSLR y subsidencia local, con velocidades de ASLR entre 0-2 mm/año; las aceleraciones son menos fiables. La subsidencia antropogénica, creciente desde finales del siglo XIX, es clave en el RSLR registrado. Sin corregir el movimiento del terreno, se sobreestima el aumento eustático climático. Integrar datos de GPS y GIA es esencial para evaluar tendencias del nivel del mar y diseñar
estrategias de gestión costera.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Abidin, H.Z., Andreas, H., Djaja, R., Darmawan, D. and Gamal, M. (2007). Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys. GPS Solutions, 12(1), pp. 23–32. https://doi.org/10.1007/s10291-007-0061-0.
  2. Antonov, J.I., Levitus, S. and Boyer, T.P. (2005). Thermosteric sea level rise, 1955–2003. Geophysical Research Letters, 32(12), L12602. https://doi.org/10.1029/2005GL023112.
  3. Baldi, P., Casula, G., Cenni, N., Loddo, F. and Pesci, A. (2009). GPS-based monitoring of land subsidence in the Po Plain (Northern Italy). Earth and Planetary Science Letters, 288(1-2), pp. 204–212. https://doi.org/10.1016/j.epsl.2009.09.023.
  4. Bell, J.W., Amelung, F., Ramelli, A.R. and Blewitt, G. (2002). Land subsidence in Las Vegas, Nevada, 1935–2000: New geodetic data show evolution, revised spatial patterns, and reduced rates. Environmental & Engineering Geoscience, 8(3), pp. 155–174. https://doi.org/10.2113/gseegeosci.8.3.155.
  5. Blewitt, G. and Hammond, W. (2018). Harnessing the GPS data explosion for interdisciplinary science. Eos, 99. https://doi.org/10.1029/2018EO104623.
  6. Blewitt, G., Hammond, W.C., Kreemer, C., Plag, H.P., Stein, S. and Okal, E. (2009). GPS for real-time earthquake source determination and tsunami warning systems. Journal of Geodesy, 83(3-4), pp.335–343. https://doi.org/10.1007/s00190-008-0260-6.
  7. Blewitt, G., Altamimi, Z., Davis, J., Gross, R., Kuo, C.Y., Lemoine, F.G., Moore, A.W., Neilan, R.E., Plag, H.P., Rothacher, M. and Shum, C.K. (2010). Geodetic observations and global reference frame contributions to understanding sea-level rise and variability. In: Understanding Sea-Level Rise and Variability. Wilson (eds.),. Oxford: Blackwell Publishing Ltd., pp. 256–284. https://doi.org/10.1002/9781444323283.ch9.
  8. Bock, Y., Melgar, D. and Crowell, B.W. (2011). Real-time strong-motion broadband displacements from collocated GPS and accelerometers. Bulletin of the Seismological Society of America, 101(6), pp. 2904–2925. https://doi.org/10.1785/0120110007.
  9. Bock, Y., Wdowinski, S., Ferretti, A., Novali, F. and Fumagalli, A. (2012). Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar. Geochemistry, Geophysics, Geosystems. 13(3), Q03023. https://doi.org/10.1029/2011GC003976.
  10. Boretti, A. (2012). Is there any support in the long term tide gauge data to the claims that parts of Sydney will be swamped by rising sea levels? Coastal Engineering. 64, pp. 161–167. https://doi.org/10.1016/j.coastaleng.2012.01.006.
  11. Boretti, A. (2022a). A revised procedure to analyze the time series of monthly average mean sea levels corrected for non-linear subsidence. Arabian Journal of Geosciences, 15(22), p 1667. https://doi.org/10.1007/s12517-022-10847-8.
  12. Boretti, A. (2022b). A revised procedure to compute future land losses in the delta of the Mekong River. Arabian Journal of Geosciences, 15(17), 1440. https://doi.org/10.1007/s12517-022-10683-8.
  13. Boretti, A. (2024a). Absolute sea levels at tide gauge locations accounting to variable subsidence. In: Nonlinear Approaches in Engineering Application. R.N. Jazar and L. Dai (eds.),. Cham: Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-53712-7_10.
  14. Boretti, A. (2024b). Accelerating subsidence in the analysis of tide gauge records. In: Nonlinear Approaches in Engineering Application. R.N. Jazar and L. Dai (eds.), Nonlinear Approaches in Engineering Application. Cham: Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-53712-7_11.
  15. Boretti, A. (2024c). Relative sea level and subsidence in Sydney (Version 1). Sidney. Mendeley Data. https://doi.org/10.17632/4gy2dmvk2y.1.
  16. Burbey, T.J., Warner, S.M., Blewitt, G., Bell, J.W. and Hill, E. (2006). Threedimensional
  17. deformation and strain induced by municipal pumping, part 1: Analysis of field data. Journal of Hydrology, 319(1-4), pp. 123–142. https://doi.org/10.1016/j.jhydrol.2005.06.028.
  18. Chambers, D.P., Merrifield, M.A. and Nerem, R.S. (2012). Is there a 60-year oscillation in global mean sea level? Geophysical Research Letters, 39(18), L18607. https://doi.org/10.1029/2012GL052885.
  19. Chang, C., Mallman, E. and Zoback, M. (2014). Time-dependent subsidence associated with drainage-induced compaction in Gulf of Mexico shales bounding a severely depleted gas reservoir. AAPG Bulletin, 98(6), pp. 1145–1159. https://doi.org/10.1306/11111313020.
  20. CSIRO (n.d.). Sea level data. Available at: https://www.cmar.csiro.au/sealevel/sl_data_cmar.html (Accessed: 27 May 2025).
  21. Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C.P., Frederikse, T. and Riva, R. (2017). Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences, 114(23), pp. 5946–5951. https://doi.org/10.1073/pnas.1616007114.
  22. Douglas, B.C. (1995). Global sea level change: Determination and interpretation. Reviews of Geophysics, 33(S2), pp. 1425–1432. https://doi.org/10.1029/95RG00379.
  23. Douglas, B.C. (1997). Global sea rise: A redetermination. Surveys in Geophysics, 18(2-3), pp. 279–292. https://doi.org/10.1023/A:1006544227856.
  24. Emery, K.O. and Aubrey, D.G. (1989). Tide gauges of India. Journal of Coastal Research, 5(3), pp. 489–501. Available at: https://www.jstor.org/stable/4297556 (Accessed: 27 May 2025).
  25. Emery, K.O. and Aubrey, D.G. (2012). Sea Levels, Land Levels, and Tide Gauges. New York: Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-8081-6.
  26. Erban, L.E., Gorelick, S.M. and Zebker, H.A. (2014). Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9(8), 084010. https://doi.org/10.1088/1748-9326/9/8/084010.
  27. Featherstone, W., Filmer, M., Penna, N., Morgan, L. and Schenk, A. (2012). Anthropogenic land subsidence in the Perth Basin: Challenges for its retrospective geodetic detection. Journal of the Royal Society of Western Australia, 95(1), pp. 53–62.
  28. Garthwaite, M.C. and Fuhrmann, T. (2020). Subsidence monitoring in the Sydney Basin, New South Wales: Results of the Camden Environmental Monitoring Project. Geoscience Australia. Available at: https://d28rz98at-9flks.cloudfront.net/144247/144247_00_1.pdf (Accessed: 27 May 2025).
  29. Hammond, W.C., Burgette, R.J., Johnson, K.M. and Blewitt, G. (2018). Uplift of the western transverse ranges and Ventura area of Southern California: A four-technique geodetic study combining GPS, InSAR, leveling, and tide gauges. Journal of Geophysical Research: Solid Earth, 123(1), pp. 836–858. https://doi.org/10.1002/2017JB014499.
  30. Harvey, T.C., Hamlington, B.D., Frederikse, T., Nerem, R.S., Piecuch, C.G., Hammond, W.C., Blewitt, G., Thompson, P.R., Bekaert, D.P.S., Landerer, F.W. and Reager, J.T. (2021). Ocean mass, sterodynamic effects, and vertical land motion largely explain US coast relative sea level rise. Communications Earth & Environment, 2(1), p. 233. https://doi.org/10.1038/s43247-021-00310-8.
  31. Higgins, S.A. (2016). Advances in delta-subsidence research using satellite methods. Hydrogeology Journal, 24(3), pp. 587–600. https://doi.org/10.1007/s10040-015-1330-7.
  32. Holgate, S.J., Matthews, A., Woodworth, P.L., Rickards, L.J., Tamisiea, M.E., Bradshaw, E., Foden, P.R., Gordon, K.M., Jevrejeva, S. and Pugh, J. (2013). New data systems and products at the Permanent Service for Mean Sea Level. Journal of Coastal Research, 29(3), pp. 493–504. https://doi.org/10.2112/JCOASTRES-D-12-00175.1.
  33. Karegar, M.A., Dixon, T.H. and Engelhart, S.E. (2016). Subsidence along the Atlantic Coast of North America: Insights from GPS and late Holocene relative sea level data. Geophysical Research Letters, 43(7), pp. 3126– 3133. https://doi.org/10.1002/2016GL068015.
  34. Khan, S.D., Huang, Z. and Karacay, A. (2014). Study of ground subsidence in northwest Harris county using GPS, LiDAR, and InSAR techniques. Natural Hazards, 73(3), pp. 1143–1173. https://doi.org/10.1007/s11069-014-1125-7.
  35. Kolker, A.S., Allison, M.A. and Hameed, S. (2011). An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophysical Research Letters, 38(21), L21404. https://doi.org/10.1029/2011GL049458.
  36. Marcos, M. and Amores, A. (2014). Quantifying anthropogenic and natural contributions to thermosteric sea level rise. Geophysical Research Letters, 41(7), pp. 2502–2507. https://doi.org/10.1002/2014GL059766.
  37. Minderhoud, P.S., Erkens, G., Pham, V.H., Bui, V.T., Erban, L., Kooi, H. and Stouthamer, E. (2017). Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environmental Research Letters, 12(6), 064006. https://doi.org/10.1088/1748-9326/aa7146.
  38. Minderhoud, P.S.J., Coumou, L., Erban, L.E., Middelkoop, H., Stouthamer, E. and Addink, E.A. (2018). The relation between land use and subsidence in the Vietnamese Mekong delta. Science of the Total Environment, 634, pp. 715–726. https://doi.org/10.1016/j.scitotenv.2018.03.372.
  39. Mörner, N.A. (1979). The northwest European “sea-level laboratory” and regional Holocene eustasy. Palaeogeography, Palaeoclimatology, Palaeoecology, 29, pp. 281–300. https://doi.org/10.1016/0031-0182(79)90086-5.
  40. Mörner, N.A. (2004). Estimating future sea level changes from past records. Global and Planetary Change, 40(1-2), pp. 49–54. https://doi.org/10.1016/S0921-8181(03)00097-3.
  41. Mörner, N.A. (2010a). Sea level changes in Bangladesh new observational facts. Energy & Environment, 21(3), pp. 235–249. https://doi.org/10.1260/0958-305X.21.3.235.
  42. Mörner, N.A. (2010b). Some problems in the reconstruction of mean sea level and its changes with time. Quaternary International, 221(1-2), pp. 3–8. https://doi.org/10.1016/j.quaint.2009.10.030.
  43. Mörner, N.A. (2013). Sea level changes past records and future expectations.
  44. Energy & Environment, 24(3-4), pp. 509–536. https://doi.org/10.1260/0958-305X.24.3-4.509.
  45. Mörner, N.A. (2017). Coastal morphology and sea-level changes in Goa, India during the last 500 years. Journal of Coastal Research, 33(2), pp. 421–434. https://doi.org/10.2112/JCOASTRES-D-16-00015.1.
  46. Parker, A. (2013a). Sea level trends at locations of the United States with more than 100 years of recording. Natural Hazards, 65(1), pp. 1011–1021. https://doi.org/10.1007/s11069-012-0400-8.
  47. Parker, A. (2013b). Oscillations of sea level rise along the Atlantic coast of North America north of Cape Hatteras. Natural Hazards, 65(1), pp. 991–997. https://doi.org/10.1007/s11069-012-0357-7.
  48. Parker, A. (2014). Minimum 60 years of recording are needed to compute the sea level rate of rise in the Western South Pacific. Nonlinear Engineering, 3(1), pp. 1–10. https://doi.org/10.1515/nleng-2014-0001.
  49. Parker, A. and Ollier, C.D. (2016). Coastal planning should be based on proven sea level data. Ocean & Coastal Management, 124, pp. 1–9. https://doi.org/10.1016/j.ocecoaman.2016.02.005.
  50. Parker, A. and Ollier, C.D. (2017). California sea level rise: Evidence based forecasts vs. model predictions. Ocean & Coastal Management, 149, pp. 198–209. https://doi.org/10.1016/j.ocecoaman.2017.10.013.
  51. Parker, A., Saleem, M.S. and Lawson, M. (2013). Sea-level trend analysis for coastal management. Ocean & Coastal Management, 73, pp. 63–81. https://doi.org/10.1016/j.ocecoaman.2012.12.005.
  52. Parker, A.L., Filmer, M.S. and Featherstone, W.E. (2017). First results from Sentinel-1A InSAR over Australia: Application to the Perth Basin. Remote Sensing, 9(3), p. 299. https://doi.org/10.3390/rs9030299.
  53. Parker, A., Mörner, N.A. and Matlack-Klein, P. (2018). Sea level acceleration caused by earthquake induced subsidence in the Samoa Islands. Ocean & Coastal Management, 161, pp. 11–19. https://doi.org/10.1016/j.ocecoaman. 2018.04.017.
  54. Peltier, W.R. (1999). Global sea level rise and glacial isostatic adjustment. Global and Planetary Change, 20(2-3), pp. 93–123. https://doi.org/10.1016/S0921-8181(98)00064-2.
  55. Peltier, W.R. (2004). Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 32, pp. 111–149. https://doi.org/10.1146/annurev.earth.32.082503.144359.
  56. Peltier, W.R. and Andrews, J.T. (1976). Glacial-isostatic adjustment, I. The forward problem. Geophysical Journal International, 46(3), pp. 605–646. https://doi.org/10.1111/j.1365-246X.1976.tb01251.x.
  57. Rateb, A. and Abotalib, A.Z. (2020). Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Science of the Total Environment, 729, 138868. https://doi.org/10.1016/j.scitotenv.2020.138868.
  58. Schlesinger, M.E. and Ramankutty, N. (1994). An oscillation in the global climate system of period 65–70 years. Nature, 367(6465), pp. 723–726. https://doi.org/10.1038/367723a0.
  59. Tregoning, P. and Watson, C. (2009). Atmospheric effects and spurious signals in GPS analyses. Journal of Geophysical Research: Solid Earth, 114(B9), B09403. https://doi.org/10.1029/2009JB006344.
  60. Wang, G. and Soler, T. (2015). Measuring land subsidence using GPS: Ellipsoid height versus orthometric height. Journal of Surveying Engineering, 141(2), 05014004. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000137.
  61. Wöppelmann, G. and Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54(1), pp. 64–92. https://doi.org/10.1002/2015RG000502.
  62. Wöppelmann, G., Miguez, B.M., Bouin, M.N. and Altamimi, Z. (2007). Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Global and Planetary Change, 57(3-4), pp. 396–406. https://doi.org/10.1016/j.gloplacha.2007.02.002.
  63. Wöppelmann, G., Testut, L. and Créach, R. (2011). La montée du niveau des océans par marégraphie et géodésie spatiale: Contributions françaises à une problématique mondiale. Annales Hydrographiques, 6eme Ser., 8(777), pp. 11–14. Available at: https://refmar.shom.fr/sites/default/files/2024-02/Woppelmann_etal_2011.pdf (Accessed: 27 May 2025).
  64. Wu, P.C., Wei, M. and D’Hondt, S. (2022). Subsidence in coastal cities throughout the world observed by InSAR. Geophysical Research Letters, 49(7), e2022GL098477. https://doi.org/10.1029/2022GL098477.
  65. Zervas, C., Gill, S. and Sweet, W. (2013). Estimating vertical land motion from long-term tide gauge records. NOAA Technical Report NOS CO-OPS 065. Available at: https://repository.library.noaa.gov/view/noaa/26077 (Accessed: 27 May 2025).