Metodología para control de calidad de datos de temperatura del mar, Pacífico colombiano
DOI:
https://doi.org/10.25268/bimc.invemar.2023.52.1.1170Palabras clave:
Datos oceanográficos, Procesamiento de datos, Gestión de datos, Análisis de datos, Método estadísticoResumen
Se describe una propuesta metodológica para el control de calidad de datos de Temperatura Superficial del Mar (TSM), compuesta por tres etapas conducentes a la asignación de banderas de calidad recomendadas por el programa para el Intercambio Internacional de Datos e Información Oceanográfica (IODE); en estas etapas se adoptaron buenas prácticas de referentes nacionales e internacionales, así como criterios estadísticos, oceanográficos y climatológicos. Durante la aplicación de la metodología en datos de TSM recopilados por
la Dirección General Marítima en cruceros oceanográficos del Pacífico colombiano en el marco del programa del Estudio Regional del Fenómeno El Niño (ERFEN), se evaluó la coherencia temporal y espacial de los datos y se identificaron comportamientos atípicos teniendo
en cuenta la influencia de El Niño/La Niña sobre los rangos de variabilidad de la TSM, obteniendo como resultado que bajo este esquema 74,09 % de los datos se le asignó la bandera de calidad clasificada como “buena”.
Citas
Andrade Amaya, C.A., O.E. Rangel Parra y E. Herrera Vásquez. 2015. Atlas de los datos oceanográficos de Colombia 1922-2013. Temperatura, salinidad, densidad, velocidad geostrófica. Dirección General Marítima, Bogotá.
Barrios Moreno, J. S. 2013. Aporte al proceso de toma de decisiones en la planificación ambiental de la región climática del Bajo Magdalena con base en análisis estadístico empleando una metodología para la homogenización de series mensuales de precipitación. Tesis Univ. Distr. Francisco José de Caldas.
Bernal S., N.R., R.L. Correa y M.E. Rangel. 2011. Homogenización de series de tiempo mensuales de precipitación: 5. IX Congr. Meteorol., 26 p.
Bernal, N., J. Barrios, M. Ramos, C. Velásquez e Y. Ibarra. 2012. Propuesta metodológica para la homogenización de series de tiempo de precipitación mensual y su utilidad en procesos de toma de decisiones, estudio de caso Región Climatológica del Bajo Magdalena. XXII Simp. Internal. Estad., Bucaramanga, Colombia.
Castañeda, D. 2017. Aplicación de técnicas de homogenización de series de tiempo de variables oceanográficas, estudio de caso subregión del Pacífico colombiano, como aporte a tema de monitoreo ambiental. Tesis Univ. Distr. Francisco José de Caldas, Bogotá.
CTN Diocean. 2018. Manual de referencia en mejores prácticas de gestión de datos oceánicos. Dimar 3/2018, Bogotá. http://10.26640/25392212.3.2018
Dimar. 2018. Guía para la normalización de conjuntos de datos oceanográficos. Centro Colombiano de Datos Oceanográficos.
Fox, J., M. Bouchet-Valat, L. Andronic, M. Ash, T. Boye, S. Calza and K. Wright. 2017. RCMDR R Commander. (versión 3.3.1) https://cran.r-project.org/web/packages/Rcmdr/index.html
Gronell, A. and S.E. Wijffels. 2008. A semiautomated approach for quality controlling large historical ocean temperature archives. J. Atmos. Ocean. Technol.,25(6): 990-1003.
IDEAM – UNAL. 2018. Variabilidad climática y cambio climático en Colombia, Bogotá. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023778/
variabilidad.pdf
IOC. 1993. Manual of quality control procedures for validation of oceanographic data. http://www.oceandocs.org/handle/1834/2849
IOC. 2010. GTSPP real-time quality control manual. https://www.oceandocs.org/handle/1834/5589
IOC. 2013a. IODE quality management framework for National Oceanographic Data Centres. https://www.iode.org/index.php?option=com_oe&task=viewDocumentRecord&docID=12661
IOC. 2013b. Ocean data standards vol. 3. Recommendation for a quality flag scheme for the exchange of oceanographic and marine meteorological data.Version 1. https://repository.oceanbestpractices.org/handle/11329/413
IOOS. 2020. Manual for real-time quality control of in-situ temperature and salinity. data. U.S. Integrated Ocean Observing System. https://cdn.ioos.noaa.gov/media/2020/03/QARTOD_TS_Manual_Update2_200324_final.pdf
Kent, E.C., N.A. Rayner, D.I. Berry, R. Eastman, V. Grigorieva, B. Huang and K.M. Willett. 2019. Observing requirements for long-term climate records at the ocean surface. Front. Mar. Sci., 6: 441.
Levitus, S. 1982. Climatological atlas of the world ocean. https://babel.hathitrust.org/cgi/pt?id=uc1.31822007471964;view=1up;seq=1
Li, Y. 2009. Modeling and analysis of spatially correlated data. https://doi.org/10.1142/9789812837448_0004
Locarnini, R.A., A.V. Mishonov, O.K. Baranova, T.P. Boyer, M.M. Zweng, H.E. García, J.R. Reagan, D. Seidov, K.W. Weathers, C.R. Paver and I.V. Smolyar. 2019. World Ocean Atlas 2018, Volume 1: Temperature. NOAA Atlas NESDIS 81. https://data.nodc.noaa.gov/woa/WOA18/DOC/woa18_vol1.pdf
Lombana, L., N. Bernal y J. Barrios. 2018. Guía para el procesamiento de series de tiempo de precipitación y temperatura: estimación de datos faltantes, detección de cambios y homogenización. Univ. Distr. Francisco José de Caldas, Bogotá.
NOAA. 2015a. About global temperature and salinity profile program. https://www.nodc.noaa.gov/GTSPP/overview/index.html
NOAA. 2015b. Climate prediction center–monitoring & data ENSO impacts. http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
OMM. 2011. Guía de prácticas climatológicas. https://library.wmo.int/pmb_ged/wmo_100_es.pdf
Ospina, D. 2001. Introducción al muestreo. Univ. Nal. Col., Bogotá.
Pabón-Caicedo, J.D. y J.E. Montealegre-Bocanegra. 2017. Los fenómenos de El Niño y de La Niña, su efecto climático e impactos socioeconómicos. Acad. Col. Cienc. Ex., Fís. Nat., Col. Jorge Álvarez Lleras 43.
Póveda, G. and O. Mesa. 1996. Feedbacks between hydrological processes in tropical South America and large-scale ocean–atmospheric phenomena. J. Clim., 10: 2690-2702. https://journals.ametsoc.org/doi/pdf/10.1175/1520-0442%281997%29010%3C2690%3AFBHPIT%3E2.0.CO%3B2
Reiner, S. and W. Alfred. 2013. Oceanographic quality flag schemes and mappings between them. Version: 1.4. Inst. Polar Mar. Res. Bremerhaven, Germany. https://odv.awi.de/fileadmin/user_upload/odv/misc/ODV4_QualityFlagSets.pdf
Romero, C., L. Marriaga y R. Torres. 2007. Metodología para la calificación y control de calidad de datos oceanográficos aplicada al Crucero Caribe 2002. Bol. Cient. CIOH. 25: 78-93. https://doi.org/10.26640/01200542.25.78_93
Rosenberg, M. and D. Corey. 2011. Passage: Pattern Analysis Spatial Statistics and Geographic Exegesis. Version 2. Meth. Ecol. Evol. Arizona State Univ. http://www.passagesoftware.net/index.php
Sánchez, R. 2006. Diseño e implementación de una herrameinta computacional para el control de la calidad y validación de datos oceanográficos. Tesis Univ. Cauca, Popayán, Colombia.
Smith, S.R., G. Alory, A. Andersson, W. Asher, A., Baker, D.I. Berry, K. Drushka, D. Figurskey, E. Freeman, P. Holthus, T. Jickells, H. Kleta, E.C. Kent, N. Kolodziejczyk, M. Kramp, Z. Loh, P. Poli, U. Schuster, E. Steventon, S. Swart, O. Tarasova, L.P. De La Villéon and N.Vinogradova-Shiffer. 2019. Ship-based contributions to global ocean, weather, and climate observing systems. Front. Mar. Sci., 6.
Wang, Q., C. Chen, F. Liao, Y. Liu and Z. Wang. 2017. Data quality control of sea surface temperature retrieved by spaceborne microwave radiometer: 1981-1984. 2017 July–IEEE Internat. Geosci. Rem. Sens. Symp. (IGARSS).
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Diana Paulina Castañeda Rodriguez, Néstor Ricardo Bernal Suárez, Ruby Viviana Ortiz Martínez, Martha Cecilia Gutiérrez Sarmiento , Leonardo Marriaga Rocha
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.