Inmunotoxicidad y daño lisosomal en la ostra Pinctada imbricata (Röding 1758) expuesta a lubricantes usados de motores de automóviles

Autores/as

  • Edgar Alexander Zapata Vivenes Escuela de Ciencias, Nucleo de Sucre, Universidad de Oriente
  • Gabreial Sanchez Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Nucleo de Sucre, Universidad de Oriente, Venezuela
  • Leida Marcano Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Nucleo de Sucre, Universidad de Oriente, Venezuela

DOI:

https://doi.org/10.25268/bimc.invemar.2024.53.1.1208

Palabras clave:

Hemocito; desestabilidad lisosomal; aceite; inmunología; estrés

Resumen

En este estudio se evaluaron los efectos que ocasiona la exposición a fracciones acuosas de lubricantes usados de motores de automóviles (Faluma) sobre parámetros hematológicos, sistema inmune, estabilidad de la membrana lisosomal de hemocitos y niveles peroxidación
lipídica y lisozimas en la glándula digestiva de la ostra perla Pinctada imbricada. Las ostras fueron expuestas a 0, 1, 10 y 20 % v/v de Faluma durante diferentes períodos: 3, 5 y 7 días, en sistema estático de acuarios bajo condiciones controladas (oxigenación 6 mg/L; 25 ± 1 °C; pH 8.0 y 36 ‰). Durante el período temprano de exposición fue observado un aumento en el número total de hemocitos (NTH) de ostras expuestas a 10 % de Faluma. En ostras expuestas a 20 % al séptimo día se observó un descenso en los parámetros inmunohematológicos, asociados a una elevada desestabilización de la membrana lisosomal y contenido de malondialdehido (MDA). Las ostras mostraron respuestas celulares compensatorias a bajas  concentraciones de Faluma, resultando mermadas durante la exposición aguda. Se evidenciaron efectos immunomodulatorios inducidos por la mezcla de compuestos xenobióticos contentivos en Faluma. Las respuestas moleculares e inmunecelulares estimadas en P. imbricada pueden suministrar información sobre los cambios en la fisiología normal de organismos que habitan
ambientes impactados por mezclas complejas de xenobióticos.

Dimensions

PlumX

Visitas

354

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Edgar Alexander Zapata Vivenes, Escuela de Ciencias, Nucleo de Sucre, Universidad de Oriente

Prof. Asociado

Citas

Aliko, V., G. Hajdaraj, A. Caci and C. Faggio. 2015. Copper induced lysosomal membrane destabilisation in haemolymph cells of mediterranean green

crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania). Braz. Arch. Biol. Technol. 58(5):750–756. https://doi.org/10.1590/s1516-

Allam, B. and D. Raftos. 2015. Immune responses to infectious diseases in bivalves. J. Invert. Pathol., 131: 121–136. https://doi.org/10.1016/j.jip.2015.05.005

Auguste, M., Balbi, T., Ciacci, C., Canonico, B., Papa, S., Borello, A., Vezzulli, L., Canesi, L. 2020. Shift in immune parameters after repeated exposure to

nanoplastics in the marine bivalve Mytilus. Front Immunol. 15: 11:426. https://doi.org/10.3389/fimmu.2020.00426

Auguste, M., T. Balbi, C. Ciacci, B. Canonico, S. Papa, A. Borello, L. Vezzulli, L. Canesi, L. 2020. Shift in immune parameters after repeated exposure to

nanoplastics in the marine bivalve Mytilus. Front Immunol. 15: 11:426. https://doi.org/10.3389/fimmu.2020.00426

Bachère, E., R.D. Rosa, P.M. Schmitt, A. Poirier and N. Merou. 2015. The new insights into the oyster antimicrobial defense: cellular, molecular and genetic

view. Fish and Shellfish Immunology, 2015, 46 (1), pp.50-64. https://doi.org/10.1016/j.fsi.2015.02.040

Balbi, T., M. Auguste, C. Ciacci and L. Canesi. 2021. Immunological Responses of Marine Bivalves to Contaminant Exposure: Contribution of the -Omics

Approach. Front Immunol. 12: 618726. https://doi.org/10.3389/fimmu.2021.618726

Basria, S.M.N., R.I. Mydin and S. Okekpa. 2019. Reactive oxygen species, cellular redox homeostasis and cancer. homeostasis–an integrated vision. In:

Lasacosvitsch F, S. Dos Anjos Garnes (Eds) BiotechOpen, London. https://doi.org/10.5772/intechopen.76096

Burgos-Aceves, M. A. and C. Faggio. 2017. An approach to the study of the immunity functions of bivalve haemocytes: Physiology and molecular aspects.

Fish & Shellfish Immunology, 67, 513–517. https://doi.org/10.1016/j.fsi.2017.06.042

Cvengros, J., T. Liptaj and N. Pónayová. 2017. Study of polyaromatic hydrocarbons in current used motor oils, Int. J. Petrochem. Sci. Eng., 2(7) 219-226.

https://doi.org/10.15406/ipcse.2017.02.00060

Freitas, J.S., T.S. Boscolo-Pereira, C.N. Pereira-Boscolo, M. Navarro-García, C.A. de Oliveira-Rivero and E.A. De Almeida. 2020. Oxidative stress,

biotransformation enzymes and histopathological alterations in Nile tilapia (Orechromis niloticus) exposed to new and used automotive lubricant oil.

Comp. Physiol., 234: 1-11. https://doi.org/10.1016/j.cbpc.2020.108770

Goven, A. and J. Kennedy. 1996. Environmental pollution and toxicity in invertebrates: An earthworm model for immunotoxicology. Adv. Comp. Environ.

Physiol., 24: 170-211. https://doi.org/10.1007/978-3-642-79847-4_7

He, L., T. He, S. Farrar, L. Ji, T. Liu and X. Ma. 2017. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell

Physiol. Biochem., 44: 532-553. https://doi.org/10.1159/000485089

Hwang, H.M., B. Stanton, T. Mcbride and M. Anderson. 2014. Polycyclic aromatic hydrocarbon body residues and lysosomal membrane destabilization

in mussels exposed to the Dubai Star bunker fuel oil (intermediate fuel oil 380) spill in San Francisco Bay. Environ. Toxicol. Chem., 33: 1117–1121.

https://doi.org/10.1002/etc.2518

Jiang Y, Tang X, Sun T, Wang and Y. BDE-47 Exposure Changed the Immune Function of Haemocytes in Mytilus edulis: An Explanation Based on ROSMediated

Pathway. Aquat Toxicol (2017) 182:58–66. https://doi.org/10.1016/j.aquatox.2016.11.010

Liao, Y., C. Cai, C. Yang, Z. Zheng, Q. Wang, X. Du and Y. Deng. 2020. Effect of protein sources in formulated diets on the growth, immune response, and

intestinal microflora of pearl oyster Pinctada fucata martensii. Aquac. Rep., 16: 100253. https://doi.org/10.1016/j.aqrep.2019.100253

Lodeiros, C.J., L. Freites, A. Márquez, M.E. Glem, M. Guevara and P.E. Saucedo. 2016. Comparative growth and survival of spat of the Caribbean pearl oyster,

Pinctada imbricata cultivated indoor with microalgae diets and outdoor with natural diet. Aquacul. Nutr., 23(3): 511–522. https://doi.org/10.1111/anu.12419

López-Landavery, E.A., G. Amador-Cano, M.A. Tripp-Valdez, N. Ramírez-Álvarez, F. Cicala, R.J.E. Gómez-Reyes, F. Díaz, A.D. Re-Araujo and C.E.

Galindo-Sánchez. 2022. Hydrocarbon exposure effect on energetic metabolism and immune response in Crassostrea virginica. Marine Pollution Bulletin.

:113738. https://doi.org/10.1016/j.marpolbul.2022.113738.

Lowe, D., M. Moore and B. Evans. 1992. Contaminant impact of interactions of molecular probes with lysosomes in living hepatocytes from dab Limanda

limanda. Mar. Ecol. Prog. Ser., 91 (1): 135-140. https://doi.org/10.3354/meps091135

Lowry, O., N. Rosebroungh, A. Farr and R. Randall. 1951. Protein measurement with the folin reagent. J. Biol. Chem., 193: 265-275.

Mansour, C., F.B. Taheur and R. Omrani. 2020. Immune biomarker and hydrocarbon concentrations in carpet shell clams (Ruditapes decussatus) collected

from a Mediterranean coastal lagoon. Euro-Mediterr J. Environ. Integr., 5: 11. https://doi.org/10.1007/s41207-020-0147-4

Martínez-Gómez, C., J. Benedicto, J.A. Campillo and M. Moore. 2008. Application and evaluation of the neutral red retention (NRR) assay for lysosomal

stability in mussel populations along the Iberian Mediterranean coast. J. Environ. Monit., 10(4): 490. https://doi.org/10.1039/b800441m

Matozzo, V., M. Giacomazzo, L. Finos, M.G. Marin, L. Bargelloni and M. Milan. 2013. Can ecological history influence immunomarker responses and

antioxidant enzyme activities in bivalves that have been experimentally exposed to contaminants? A new subject for discussion in “eco-immunology”

studies. Fish Shell. Immunol., 35(1): 126–135. https://doi.org/10.1016/j.fsi.2013.04.013

Méthé, D., L.A. Comeau, H. Stryhn, J.F. Burka, T. Landry and J. Davidson. 2017. Haemolymph fluid osmolality influences the neutral-red retention assay

in the eastern oyster Crassostrea virginica, J. Molluscan Stud. 83: 229–234. https://doi.org/10.1093/mollus/eyw050

Nusetti, O., L. Marcano, E. Zapata, M. Escalpés, S. Nusetti y C. Lodeiros. 2004. Respuestas inmunológicas y de enzimas antioxidantes en la ostra perla Pinctada

imbricata (Mollusca: Pteridae) expuesta a niveles subletales de fuel oil Nº6. Interciencia, 29(6): 324-328. http://ve.scielo.org/scielo.php?script=sci_

arttextypid=S0378-18442004000600008ylng=esynrm=iso

Ohkawa, H., N. Ohishi and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Rev. Anal. Biochem. 95: 351–358.

https:// doi. org/10.1016/0003-2697(79)90738

Olonisakin, A., A. Adebayo and M.O. Aremu. 2005. Metal concentrations of fresh, used and treated crankcase oil. Biosci. Biotech. Res. Asia; 3: 187-191.

Available from: http://www.biotech-asia.org/?p=4361

Parisi, M.G., J. Pirrera, C.M. La Corte, D. Dara, M. Parrinello and Cammarata. 2021. Effects of organic mercury on Mytilus galloprovincialis hemocyte

function and morphology. J. Comp. Physiol. B; 191: 143–158. https://doi.org/10.1007/s00360-020-01306-0

Renault, T. 2015. Immunotoxicological effects of environmental contaminants on marine bivalves. Fish Shellfish Immunol., 46(1): 88–93. https://doi.

org/10.1016/j.fsi.2015.04.011

Romero-Fereira, P., D. Arrieche, V. Acosta, L. Pérez and C. Lodeiros. 2017. Gametogenic cycle of the oyster, Pinctada imbricata, in suspended culture in

the Gulf of Cariaco, Venezuela. Lat. Am. J. Aquat. Res.;45(1): 139-148. https://doi.org/10.3856/vol45-issue1-fulltext-13

Sun, S., W. Shi, Y. Tang, Y. Han, X. Du, W. Zhou, Y. Hu, C. Zhou and G. Liu. 2020. Immunotoxicity of petroleum hydrocarbons and microplastics alone

or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms. Sci. Total Environm., 728: https://doi.org/10.1016/j.

scitotenv.2020.138852

Strober, W. 2015. Trypan blue exclusion test of cell viability. Curr. Protoc. Im. 2 111, https://doi.org/10.1002/0471142735.ima03bs111

Sokal, R. and F. Rohlf. 2012. Biometry. 4th Ed. W.H. Freeman. New York.

Trivedi, P.C., J.J. Bartlett and T. Pulinilkunnil. 2020. Lysosomal biology and function: Modern view of cellular debris bin. Cells, 9(5): 1131. https://

doi. org/10.3390/cells9051131

Vásquez, G., R. Crescini, W. Villalba, J. Mogollón y L. Troccoli. 2015. Aspectos biológicos básicos de Pinctada imbricata (Bivalvia: Pteriidae) en la laguna

de La Restinga, isla de Margarita, Venezuela. Rev, Cienc. Mar. Cost.,7: 117-132. https://doi.org/10.15359/revmar.7.8

Villegas, L., C. Lodeiros, K. Malavé, J. Revilla y M. Lemus. 2015. Efecto subletal del cadmio en la ostra perla del Caribe Pinctada imbricata (Pteroida:

Pteriidae) Röding, 1798. Saber; 27 (1): 39-45

Week, J., V. Sharp and T. Williams. 1997. Contaminant-induced lisosomal membrane damage in blood cells of green mussel Perna viridis (Mytilidae): a

field transplant study. Technical Report WC/97/64. DFID-TDR Proyect R6191. Land-derived contaminant influx to Jakarta Bay, Indonesia; 2: 1-30.

Wei J., B Liu, S Fan, B Zhang, J Su and D. Yu. 2017. Serum immune response of pearl oyster Pinctada fucata to xenografts and allografts. Fish Shellfish

Immunol., 62: 303-310. https://doi.org/10.1016/j.fsi.2017.01.039

Xie, J., C. Zhao, Q. Han, H. Zhou, Q. Li and X. Diao. 2017. Effects of pyrene exposure on immune response and oxidative stress in the pearl oyster, Pinctada

martensii. Fish Shellfish Immunol., 63: 237–244. https://doi.org/10.1016/j.fsi.2017.02.032

Zha, S., J. Rong, X. Guan, Y. Tang, Y. Han and G. Liu. 2019. Immunotoxicity of four nanoparticles to a marine bivalve species, Tegillarca granosa. J. Hazard

Mater 377:237–48. https://doi.org/10.1016/j.jhazmat.2019.05.071

Zannella, C., F. Mosca, F. Mariani, G. Franci, V. Folliero, M. Galdiero, P.G. Tiscar and M. Galdiero. 2017. Microbial diseases of bivalve mollusks: infections,

immunology and antimicrobial defense. Mar. Drugs; 15(6):182. https://doi.org/10.3390/md15060182

Zapata-Vívenes, E., L. Marcano y V. Acosta 2018. Respuestas inmunológicas, estabilidad lisosomal y frecuencia de micronúcleos en Eurythoe

complanata (Polychaeta:Amphinomidae) expuestos a una fracción acuosa de lubricantes usados de motores de automóviles. Rev. Intern. Contam.

Amb., 34 (2): 297-305. https://doi.org/10.20937/RICA.2018.34.02.10

Zapata-Vívenes, E., O. Nusetti, L. Marcano, G. Sánchez and H. Guderley. 2020. Antioxidant defenses of flame scallop Ctenoides scaber (Born, 1778) exposed

to the water-soluble fraction of used vehicle crankcase oils. Toxicol. Rep., 7:1597–1606. https://doi.org/10.1016/j.toxrep.2020.11.009

Zapata Vívenes, E., G. Sánchez, O. Nusetti and L. Marcano. 2022. Modulation of innate immune responses in the flame scallop Ctenoides scaber (Born,

caused by exposure to used automobile crankcase oils, Fish & Shellfish Immunology, 130: 342- 349. https://doi.org/10.1016/j.fsi.2022.09.020

Zhao, C., L. Xiaoxu, L. Shibin and Y. Chang. 2011. Assessments of lysosomal membrane responses to stresses with neutral red retention assay and its potential

application in the improvement of bivalve aquaculture. Afr, J. Biotechnol., 10 (64): 13968- 3973. https://doi.org/10.5897/AJB10.2283

Zheng, F., F. Marques Gonçalves, Y. Abiko, H. Li, Y. Kumagai and M. Aschner. 2020. Redox toxicology of environmental chemicals causing oxidative stress.

Redox Biol., 34: https://doi.org/10.1016/j.redox.2020.101475

Descargas

Publicado

2024-01-01

Cómo citar

1.
Zapata Vivenes EA, Sanchez G, Marcano L. Inmunotoxicidad y daño lisosomal en la ostra Pinctada imbricata (Röding 1758) expuesta a lubricantes usados de motores de automóviles. Bol. Investig. Mar. Costeras [Internet]. 1 de enero de 2024 [citado 28 de abril de 2024];53(1):9-24. Disponible en: http://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1208
صندلی اداری سرور مجازی ایران Decentralized Exchange

Número

Sección

Articulos de investigación
فروشگاه اینترنتی