Moisture Transport between the Caribbean Sea, the Eastern Tropical Pacific, and Northern South America and its Consequences for the Sea Surface Salinity

Authors

  • Antonio Miguel González Dumar Universidad Nacional de Colombia, sede Medellín
  • Gladys Rocío Bernal Franco Universidad Nacional de Colombia
  • Jaime Ignacio Vélez Upegui Universidad Nacional de Colombia

DOI:

https://doi.org/10.25268/bimc.invemar.2023.52.2.1205

Keywords:

Atmospheric humidity balance, Low level jets, Sea surface salinity, Colombia Basin, , Panama Basin

Abstract

Moisture transport between the Caribbean and the eastern tropical Pacific is funneled in low-level jets and has effects on oceanography, with repercussions on global circulation. To understand how much water is transported on different time scales, what is the role of low-level jets, and their relationship with surface salinity in the Colombia (Caribbean) and Panama (Pacific) basins, data from ERA5 were used to calculate the moisture balances of each catchment area, and data from GODAS to estimate the surface salinity. The absolute values of moisture transport in the jets were greater than those of the entire boundaries. There is moisture transport in the opposite direction to the jets at higher levels of the atmosphere. The average conditions of the balances, as well as their annual and inter-annual variability, are related to the salinity conditions of the sea. The net atmospheric balance of the Caribbean catchment area is negative, generating conditions of higher salt concentration, while that of the Pacific is positive, generating dilution. At the seasonal and inter annual scales, the atmospheric balances and their salinity response indicate important differences between the two slopes.

Dimensions

PlumX

Visitas

361

Downloads

Download data is not yet available.

References

Algarra, I., J. Eiras-Barca, G. Miguez-Macho, R. Nieto and L. Gimeno. 2019. On the assessment of the moisture transport by the Great Plains low-level jet. Earth Syst. Dyn., 10, 107-119. doi:https://doi.org/10.5194/esd-10-107-2019, 2019

Alory, G., C. Maes, T. Delcroix, N. Reul and S. Illig. 2012. Seasonal dynamics of sea surface salinity off Panama: the Far Eastern Pacific Fresh Pool. JGR., 117. doi:https://doi.org/10.1029/2011JC007802, 2012

Amador, J. 2008. The Intra-Americas Sea low-level jet: overview and future research. Ann.New York Acad. Sci.,. 1146, 153-188. doi:https://doi.org/10.1196/ annals.1446.012, 2008

Amador, J., E. Alfaro, O. Lizajo and V. Magaña, 2006. Atmospheric forcing of the eastern tropical paficif: a review. Prog.Oceanogr., 69, 101-142. doi:https:// doi.org/10.1016/j.pocean.2006.03.007, 2006

Behringer, D. and Y. Xue. 2004. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface. AMS 84th Annual Meeting, Washington State Convention and Trade Center, (págs. 11-15). Seattle, WA.

Beier, E., G. Bernal , M. Ruiz-Ochoa and E.D. Barton. 2017. Freshwater exchanges and surface salinity in the Colombian basin, Caribbean Sea. PLOS ONE, 12. doi:https://doi.org/10.1371/journal.pone.0182116, 2004

Benway, H. and A. Mix. 2004. Oxygen isotopes, upper-ocean salinity and precipitation sources in the eastern tropical Pacific. EPSL,.224, 493-507. doi:https:// doi.org/10.1016/j.epsl.2004.05.014, 2004

Chelton, D., M. Freilich and S. Esbensen. 2000a. Satellite Observations of the Wind Jets off the Pacific Coast of Central America. Part I: Case Studies and Statistical Characteristics. MWR, 128, 1993-2018. doi:https://doi.org/10.1175/15200493(2000)128<1993:SOOTWJ>2.0.CO;2, 2000

Chelton, D., M. Freilich and S. Esbensen. 2000b. Satellite Observations of the Wind Jets off the Pacific Coast of Central America. Part II: Regional Relationships and Dynamical Considerations. MWR, 128, 2019-2043. doi:https://doi.org/10.1175/1520-0493(2000)128<2019:SOOTWJ>2.0.CO;2, 2000

Cook, K. and E. Vizy. 2010. Hidrodynamics of the Caribbean Low-Level Jet and its Relationship to Precipitation. JCLI, 23, 1477-1494. doi:https://doi. org/10.1175/2009JCLI3210.1, 2010

Copernicus Climate Change Service (C3S). 2017. ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). Obtenido de https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5, 2017

Cuartas, L. A. y G. Poveda. 2002. Balance atmosferico de humedad y estimacion de la precipitación reciclada en Colombia según el Reanalisis NCEP/NCAR. Meteorol. Colomb., 57-65. Obtenido de https://repositorio.unal.edu.co/handle/unal/7936, 2002

Delcroix, T. and C. Hénin. 1999. Seasonal and interannual variations of sea surface salinity in the Tropical Pacific Ocean. JGR, 96, 135-150. doi:https://doi. org/10.1029/91JC02124, 1999

Durán-Quesada, A. M., L. Gimeno and J.A Amador-Astúa. 2017. Role of moisture transport for Central American precipitation. Earth Syst. Dyn., 8, 147-161. doi:https://doi.org/10.5194/esd-2016-66, 2017

Eiras-Barca, J., F. Domínguez, H. Hu, D. Garaboa-Paz and G. Miguez-Macho, G. 2017. Evaluation of the Moisture Sources in two Extreme Landfalling Atmospheric River Events using an Eulerian WRF-Tracers tool. Earth Syst. Dyn., 8, 1247-1261. doi:https://doi.org/10.5194/esd-8-1247-2017, 2017

Fiedler, P. and L. Talley. 2008. Hydrography of the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 143-180. doi:https://doi.org/10.1016/j. pocean.2006.03.008, 2008.

Hersbach, H., B. Bell, P. Berrisfor, S. Hiraha, A. Horányi, J. Muñoz-Sabater and J-N. Thépaut. 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc.

Hoyos, I. A. Martínez, F. Domínguez and R. Nieto. 2018. Moisture origin and transport processes in Colombia, northern South America. Clim. Dyn., 50. doi:https://doi.org/10.1007/s00382-017-3653-6, 2018.

Hoyos, I., J. Cañón-Barriga, F. Arenas-Suárez, F. Domínguez and B-A. Rodríguez. 2019. Variability of regional atmospheric moisture over Northern South America: patterns and underlying phenomena. Clim. Dyn., 52, 893-911. doi:https://doi.org/10.1007/s00382-018-4172-9, 2019.

Hu, C., E. Montgomery, R.W. Schmitt and F. Müller-Karger. 2004. The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: Observation from space and S-PALACE floats. Deep-sea Res., 51, 1151-1171. doi:https://doi.org/10.1016/j.dsr2.2004.04.001, 2004.

Kessler, W. 2006. The circulation of the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 181-217. doi:https://doi.org/10.1016/j.pocean.2006.03.009, 2006.

Martins, M. S. and D. Stammer. 2015. Pacific Ocean surface freshwater variability underneath the double ITCZ as seen by satellite sea surface salinity retrievals. JGR, 120, 5870-5885. doi:https://doi.org/10.1002/2015JC010895, 2015.

Morales, J., P. Arias and A. Martínez. 2017. Role of the Caribbean low-level jet and the Choco jet in the patterns of atmospheric moisture transport towards Central America. CHyCle-2017. doi:https://doi.org/10.3390/CHyCle-2017-04861, 2017.

Morales, J., P. Arias, A. Martínez and A. Durán-Quesada. 2020. The role of low-level circulation on water vapour transport to central and northern South America: Insights from a 2D Lagrangian approach. Int. J. Climatol., 41, E2801-E2819. doi:https://doi.org/10.1002/joc.6873, 2020.

Poveda, G. y O. Mesa. 1999. La Corriente de Chorro Superficial del Oeste (“del CHOCÓ”) y otras dos corrrientes de chorro atmosféricas sobre Colombia: Climatología y Variabilidad durante las fases del ENSO. Revista Acad. Colomb. Ci. Exact., 23, 517-528, 1999.

Poveda, G. and O. Mesa. 2000. On the existence of Lloró (the rainiest locality on earth): Enhanced Ocean-land-atmosphere interaction by a low-level jet. Geophys. Res. Lett., 27, 1675-1678. doi:https://doi.org/10.1029/1999GL006091 doi:https://doi.org/10.1002/2013WR014087, 2000.

Poveda, G., P. Waylen and R. Pulwarty. 2006. Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica.

Palaeogeogr. Palaeoclimatol. Palaeoecol., 234, 3-27. doi:https://doi.org/10.1016/j.palaeo.2005.10.031, 2006.

Poveda, G., L. Jaramillo-Moreno and L.F. Vallejo. 2014. Seasonal Precipitation Patterns Along Pathways of South American Low-Level Jets and Aerial Rivers. Water Resour. Res., 16, 1-21, 2014.

Rahmstorf, S. 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn., 12, 799-811. doi:https://doi.org/10.1007/ s003820050144, 1996.

Sakamoto, M. S., T. Ambrizzi and G. Poveda. 2012. Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Adv. Meteorol., 2011. doi:https://doi.org/10.1155/2011/890759, 2012.

Schumacher, D., J. Keune and D. Miralles. 2020. Atmospheric heat and moisture transport to energy- and water-limited ecosystems. Ann.New York Acad. Sci., 123-138. doi:10.1111/nyas.14357, 2020.

Serna, L. M., P. Arias y S. Vieira. 2018. Las corrientes superficiales de chorro del Chocó y el Caribe durante los eventos de El Niño y El Niño Modoki. Revista Acad. Colomb. Ci. Exact., 42, 410-421. doi:https://doi.org/10.18257/raccefyn.705, 2018

Yoo, J.-M., J. Carton. 1990. Annual and Interannual Variation of the Freshwater Budget in the Tropical Atlantic Ocean and the Caribbean Sea. JPO, 831-845. doi:https://doi.org/10.1175/1520-0485(1990)020%3C0831:AAIVOT%3E2.0.CO;2, 1990.

Zaucker, F., T.F. Stocker, and B. Wallace. 1994. Atmospheric freshwater fluxes and their effect on the global thermohaline circulation. JGR., 99, 12443-12457. doi:https://doi.org/10.1029/94JC00526, 1994.

Published

2023-10-11

How to Cite

1.
González Dumar AM, Bernal Franco GR, Vélez Upegui JI. Moisture Transport between the Caribbean Sea, the Eastern Tropical Pacific, and Northern South America and its Consequences for the Sea Surface Salinity. Bol. Investig. Mar. Costeras [Internet]. 2023 Oct. 11 [cited 2024 Nov. 26];52(2):57-76. Available from: http://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1205
سرور مجازی ایران Decentralized Exchange

Issue

Section

Research Articles
فروشگاه اینترنتی