Climate change and socioeconomic impacts on the Colombian coastal and insular area

Authors

  • Desireé María Hernández Narváez Instituto de Investigaciones Marinas y Costeras - Invemar
  • Alejandra María Vega Cabrera Instituto de Investigaciones Marinas y Costeras - Invemar
  • Anny Paola Zamora Bornachera Instituto de Investigaciones Marinas y Costeras - Invemar
  • Paula Cristina Sierra Correa Instituto de Investigaciones Marinas y Costeras - Invemar

DOI:

https://doi.org/10.25268/bimc.invemar.2019.48.2.764.

Keywords:

Indicators, Vulnerability, Threat, Coastal Marine, Climate Change

Abstract

Climate change has a global-level impact, with effects on natural and human systems, and in particular coastal zones have been recognized as area sensitive to threats of sea level rise (SLR) and coastal erosion. This exercise was carried out in order to identify the impacts of climate change at a socioeconomic level in Colombia’s coastal zone, which is composed of 12 departments with 60 municipalities
framed within ten Coastal Environmental Units (UAC). Methodologically, 23 indicators were defined using the risk approach, that combines the exposure (14 indicators), sensitivity (6 indicators) and adaptive capacity (3 indicators), framed within food security, human habitat, and
infrastructure dimensions. To do this, official information databases were built regarding the socioeconomic elements exposed, combined with the use of the SLR and coastal erosion-affected areas report, elaborated by Invemar within the Third National Communication on Climate Change framework. With this report data, indicator matrices were built and the levels of affectation in each indicator were calculated using distribution by quintiles. The results show that towards the year 2100, about 5% of the population and 4.3% of houses will be affected by SLR, especially in the Guapi and Mosquera (Cauca) and La Tola (Nariño) municipalities in the Pacific region and Remolino, Sitio Nuevo and Pueblo Viejo (Magdalena) municipalities in the Caribbean. In addition, tourist areas could lose 13% due to coastal erosion, and 5.9% of the port infrastructure and 12% of the roads could be flooded by SLR. These results constitute an input to support territorial planning, as well as
the formulation of municipal and sectoral plans for climate change management on Colombia’s coasts.

Dimensions

PlumX

Visitas

1216

Downloads

Download data is not yet available.

References

Allison, E., A. Perry, M. Badjeck, W. Adger, K. Brown, D. Conway, A. Halls, G. Pilling, J. Reynolds, N. Andrew, N. Dulvy. 2009. Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries 10 (2): 173 – 196. https://doi.org/10.1111/j.1467-2979.2008.00310.x

Balica, F., N. Wright, F. Nat Hazards. 2012. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. 64(1): 73-105. DOI 10.1007/s11069-012-0234-1

Banco Interamericano de Desarrollo – BID. 2013. Mitigación y adaptación al cambio climático a través de la vivienda pública Marco teórico para el Diálogo Regional de Políticas sobre Cambio Climático del BID. 61 p.

Banco Interamericano de Desarrollo – BID. 2010. Vulnerabilidad y adaptación al cambio climático Diagnóstico inicial, avances, vacíos y potenciales líneas de acción en Mesoamérica. Washington, D.C. 110 p.

Binita, K., M. Shepherd, C. Johnson. 2015. Climate change vulnerability assessment in Georgia. Applied Geography, 62: 62 – 74. https://doi.org/10.1016/j.apgeog.2015.04.007

Brown, J., K. Morrissey, P. Knight, T. Primer, L. Almeida, G. Masselink, C. Bird, D. Doods, A. Plater. 2018. A coastal vulnerability assessment for planning climate resilient infrastructure. Ocean & Coastal Management, 163: 101-112. https://doi.org/10.1016/j.ocecoaman.2018.06.007.

Castán, V. 2017. Urban governance and the politics of climate change. World Development, 93: 1 – 15. Doi: 10.1016/j.worlddev.2016.12.031.

Chen Yuan, X., Y. Wei, B. Wang, Z. Mi. 2017. Risk management of extreme events under climate change. Journal of Cleaner Production, 166: 1169 – 1174. Doi: 10.1016/j.jclepro.2017.07.209.

Dia, J., A. Yañez, J. Rybczyk. 2011. Cambio climático: efectos, causas, consecuencias: cambios físicos, hidromorfológicos, ecofisiológicos y biogeográficos. Módulo de Referencia en Sistemas Terrestres y Ciencias Ambientales. Tratado de estuario y ciencia costera. Vol. 8: 303 – 315. https://doi.org/10.1016/B978-0-12-374711-2.00815-9.

Ding, Q., C. Xinjun, R. Hilborn, Y. Chen. 2017. Vulnerability to impacts of climate change on marine fisheries and food security. Marine Policy, 83: 55 – 61. Doi: 10.1016/j.marpol.2017.05.011.

Gallopin, G. 2006. Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change. Vol 16 (3): 293-303. https://doi.org/10.1016/j.gloenvcha.2006.02.004

IDEAM - PNUD. 2010. Segunda Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre Cambio Climático. Bogotá. 440 p.

IDEAM – PNUD. 2001. Colombia Primera Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. Bogotá. 267 p.

INVEMAR – IDEAM. 2017. Elaboración del Análisis de Vulnerabilidad Marino Costera e Insular ante el Cambio Climático para el País. Informe Técnico Final (ITF) – 001. Contrato con el Programa de las Naciones Unidas para el Desarrollo – PNUD, N°. 0000040357. Santa Marta. 256 p.

Intergovernmental Panel on Climate Change - IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1132 p.

Lampis, 2013. Vulnerabilidad y adaptación al cambio climático: Debates acerca del concepto de vulnerabilidad y su medición. Cuadernos de Geografía, revista colombiana de geografía, vol. 22(2): 17-33.

Mainali, J. y N. Pricope. 2017. High-resolution spatial assessment of population vulnerability to climate change in Nepal. Applied Geography, (82): 66 – 82. Doi: 10.1016/j.apgeog.2017.03.008.

Michailidou, A., C. Vlachokostas., N. Moussiopoulos. 2016. Interactions between climate change and the tourism sector: Multiple-criteria decision analysis to assess mitigation and adaptation options in tourism áreas, (55): 1 – 12. Doi.org/10.1016/j.tourman.2016.01.010.

Ministerio del Medio Ambiente - MINAMBIENTE. (2001). Pronunciamiento sobre los estudios y propuestas de zonificación en áreas de manglares jurisdicción de CARSUCRE, CORALINA, CORPAMAG, CRA, CVS y CVC y, se adoptan otras determinaciones. 45 p.

Mussetta, P., M. Barrientos, E. Acevedo, S. Turbay, O. Ocampo. 2017. Vulnerabilidad al cambio climático: Dificultades en el uso de indicadores en dos cuencas de Colombia y Argentina. Revista de Metodología de las Ciencias Sociales, (36): 119-147. Doi/ empiria.36.2017.17862.

Pabón, J., A, Lozano. 2005. Aspectos relacionados con las estimaciones globales y regionales del ascenso del nivel del mar y su aplicación a Colombia. Cuadernos de Geografía, 22(2): 17-33.

Phillips, M., A. Jones., 2006. Erosion and tourism infrastructure in the coastal zone: Problems, consequences and management. Tourism Management, 27 (3): 517-524. https://doi.org/10.1016/j.tourman.2005.10.019.

Reyer, C., S. Adams, T. Albrecht, F. Baarsch, A. Boit, N. Canales, M. Cartsburg, D. Coumou, A. Eden, F. Fernandes, F. Langerwisch, R. Marcus, M. Mengel, D. Mira-Salama, M. Perette, P. Pereznieto, A. Rammig, J. Reinhardt, A. Robinson, M. Rocha, B. Sakschewski, M. Schaeffer, C. Schleussner, O. Serdeczny, K. Thonicke. 2015. Climate change impacts in Latin America and the Caribbean and their implications for development. International Bank for Reconstruction and Development/The World Bank. DOI 10.1007/s10113-015-0854-6.

Slangen, A., J. Church, X. Zhang, D. Monselesan. 2014. Detection and attribution of global mean thermosteric sea level change. Geophys. Res. Lett., 41: 5951–5959. https://doi.org/10.1002/2014GL061356.

Yáñez-Arancibia, A., J. Day, R. Twilley, y R. Day. 2014. Manglares frente al cambio climático, ¿tropicalización global del Golfo de México. Madera y Bosques, 20 (3): 39-75.

Welz, J., y K. Krellenberg. 2016. Vulnerabilidad frente al cambio climático en la Región Metropolitana de Santiago de Chile: posiciones teóricas versus evidencias empíricas. Revista EURE - Revista De Estudios Urbano Regionales, 42 (125). 251 – 272.

Winchester, L. y R. Szalachman. 2012. The Urban Poor’s Vulnerability to Climate Change in Latin America and the Caribbean. 727-751. En: The World Bank (Ed). Cities and Climate Change, Responding to an Urgent Agenda. Serie de desarrollo urbano vol (2). Washington, DC: 845 p.

Wong, P., I. Losada, J. Gattuso, J. Hinkel, A. Khattabi, K. McInnes, Y. Saito, A. Sallenger. 2014. Cambio climático 2014: impactos, adaptación y vulnerabilidad. Parte A: Aspectos globales y sectoriales. Sistemas costeros y áreas bajas. Contribución del Grupo de Trabajo II al Quinto Informe de Evaluación del Panel Intergubernamental sobre Cambio Climático. 361-409.

Published

2019-11-22

How to Cite

1.
Hernández Narváez DM, Vega Cabrera AM, Zamora Bornachera AP, Sierra Correa PC. Climate change and socioeconomic impacts on the Colombian coastal and insular area. Bol. Investig. Mar. Costeras [Internet]. 2019 Nov. 22 [cited 2024 Nov. 22];48(2). Available from: http://boletin.invemar.org.co/ojs/index.php/boletin/article/view/871
سرور مجازی ایران Decentralized Exchange

Issue

Section

Research Articles
فروشگاه اینترنتی