Análisis de vulnerabilidad y riesgo climático del socioecosistema de manglar en Colombia

Autores/as

  • Julio César Herrera Carmona Docente, Departamento de Biología, Universidad del Valle https://orcid.org/0000-0003-0446-3275
  • Johanna Prüssmann Uribe WWF
  • Melissa Abud Hoyos WWF
  • Luis Alonso Zapata Padilla WWF

DOI:

https://doi.org/10.25268/bimc.invemar.2024.53.2.1308

Palabras clave:

Cambio climático, Pacífico de Colombia, Caribe de Colombia, Amenazas, Adaptación

Resumen

Los manglares están expuestos a amenazas como el aumento del nivel del mar, la erosión costera, el aumento de la frecuencia e intensidad de eventos extremos, además de presiones socioeconómicas. Este estudio tuvo como objetivo realizar un análisis de vulnerabilidad y riesgo climático para el socioecosistema de manglar de Colombia. Se utilizaron 22 indicadores de amenaza, 8 de sensibilidad y 18 de capacidad adaptativa; mediante un análisis numérico multivariado se generaron los índices de vulnerabilidad y riesgo climático para los manglares del Pacífico y del Caribe de Colombia. Los manglares que presentaron mayor riesgo en el Caribe se ubicaron en los municipios de Manaure, Tubará y Puerto Escondido, mientras que en el Pacífico estas áreas de alto riesgo se ubicaron en la costa sur, en los municipios de Olaya Herrera, Francisco Pizarro y La Tola, y en la costa norte de Bahía Solano. Los indicadores de amenaza que capturaron la mayor variabilidad del análisis fueron: el aumento del nivel del mar, el cambio en la línea de costa, el cambio en la oferta hídrica, el cambio en la cobertura de manglares por cambio en la línea de costa, el cambio en la temperatura y la precipitación debido a El Niño y La Niña, y la huella humana. Estos resultados son un insumo para la gestión climática de los manglares en Colombia y contribuirán al Programa Nacional de Manglares. Asimismo, podrán contribuir al Plan Nacional de Restauración de Manglares, la Contribución Nacionalmente Determinada de Colombia (NDC), la Estrategia Climática de Largo Plazo de Colombia E2050, y los Planes Territoriales de Adaptación al Cambio Climático de los departamentos y municipios.

Dimensions

PlumX

Visitas

684

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Åhlén, I., G. Vigouroux, G. Destouni, J. Pietroń, N. Ghajarnia, J. Anaya, J. Blanco, S. Borja, S. Chalov, K. P. Chun, N. Clerici, A. Desormeaux, P. Girard, O. Gorelits, A. Hansen, F. Jaramillo, Z. Kalantari, A. Labbaci, L. Licero-Villanueva, J. Livsey, G. Maneas, K.L. McCurley Pisarello, D. Moshir Pahani, S. PalominoÁngel, R. Price, C. Ricaurte-Villota, L. Fernanda Ricaurte, V. H. Rivera-Monroy, A. Rodríguez, E. Rodríguez, J. Salgado, B. Sannel, S. Seifollahi-Aghmiuni, M. Simard, Y. Sjöberg, P. Terskii, J. Thorslund, D.A. Zamora and J. Jarsjö. 2021. Hydro-climatic changes of wetlandscapes across the world. Sci. Rep., 11, 2754. https://doi.org/10.1038/s41598-021-81137-3

Alongi, D. 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1: 30–39. https://doi.org/10.1007/s40641-015-0002-x

Andrews, T.J., B.F. Clough and G.J. Muller. 1984. Photosynthetic gas exchange and carbon isotope ratios of some mangroves in North Queensland. In: Teas, H.J. (Ed). Physiology and management of mangroves. Tasks for vegetation science, vol. 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6572-0_2

Arias, P., G. Ortega, L.D. Villegas and A. Martínez. 2021. Colombian climatology in CMIP5/CMIP6 models: Persistent biases and improvements. Rev. Fac. Ing. Univ. Antioquia, 100: 75-96. https://www.redalyc.org/articulo.oa?id=43068102007

Armentano, T.V., R.F. Doren, W.J. Platt and T. Mullins. 1995. Effects of hurricane Andrew on coastal and interior forests of southern Florida: Overview and synthesis. J. Coast. Res., Spec. Iss., 21: 111-114. http://www.jstor.org/stable/25736004

Ball, M.C., M.J. Cochrane and H.M. Rawson. 1997. Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2. Plant Cell Environ., 20: 1158-1166. https://doi.org/10.1046/j.1365-3040.1997.d01-144.x

Blanco-Libreros, J.F. and K. Ramírez-Ruiz. 2021. Threatened mangroves in the Anthropocene: habitat fragmentation in urban coastalscapes of Pelliciera spp. (Tetrameristaceae) in northern South America. Front. Mar. Sci. 8:670354. https://doi.org/10.3389/fmars.2021.670354

Botero, L. and H. Salzwedel. 1999. Rehabilitation of the Cienaga Grande de Santa Marta, a mangrove-estuarine system in the Caribbean coast of Colombia. Ocean Coast. Manag., 42(2–4): 243-256. https://doi.org/10.1016/S0964-5691(98)00056-8

Bunting, P., A. Rosenqvist, L. Hilarides, R.M. Lucas, N. Thomas, T. Tadono, T. A. Worthington, M. Spalding, N.J. Murray and L. M. Rebelo. 2022. Global mangrove extent change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens., 14: 3657. https://doi.org/10.3390/rs14153657

Carpenter, S.R., B.H. Walker, J.M. Anderies and N. Abel. 2001. From metaphor to measurement: resilience of what to what? Ecosystems, 4: 765-781. https://doi. org/10.1007/s10021-001-0045-9

Castellanos, G., E. Casella, H. Tavera, L.A. Zapata and M. Simard. 2021. Structural characteristics of the tallest mangrove forests of the American continent: A comparison of ground-based, drone and radar measurements. Front. For. Glob. Change, 4: 732468. https://doi.org/10.3389/ffgc.2021.732468

Church, J., J. Hunter, K. McInnes and N. White. 2004. Sea level rise and the frequency of extreme events around the Australian coastline. In Coast to Coast ‘04 – Conf. Proc., Australia’s Nat. Coast. Conf., Hobart, 19-23 April 2004. 8 p.

Correa, C.A., A. Etter, J. Díaz-Timte, S. Rodríguez, W. Ramírez and G. Corzo. 2020. Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecol. Indic., 117: 106630. https://doi.org/10.1016/j.ecolind.2020.106630

Dahdouh-Guebas, F., J. Hugé, G:M.O. Abuchahla, S. Cannicci, L.P. Jayatissa, J.G.. Kairo, S.K. Arachchilage, N. Koedam, T.W.G.F. Mafaziya, N. Mukherjee, M. Poti, N. Prabakaran, H.A. Ratsimbazafy, B. Satyanarayana, M. Thavanayagam, K.V Velde and D. Wodehouse, 2021. Reconciling nature, people and policy in the mangrove social-ecological system through the adaptive cycle heuristic. Estuar. Coast. Shelf Sci., 248: 106942. https://doi.org/10.1016/j.ecss.2020.106942

Duke, N.C., J.M. Kovacs, A.D. Griffiths, L. Preece, D.J.E Hill, P. Oosterzee, J. Mackenzie, H.S Morning and D. Burrows. 2017. Largescale dieback of mangroves in Australia’s Gulf of Carpentaria: A severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res., 678: 1816–1829. https://doi.org/10.1071/mf16322

Ellison, J. 2010. Vulnerability of Fiji’s mangroves and associated coral reefs to climate change. A Review. Suva, Fiji, WWF South Pacific Office, 50 p. https://awsassets.panda.org/downloads/review_of_fiji_s_mangroves_web_version.pdf

Ellison, J.C. and D.R. Stoddart. 1991. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. J. Coast. Res., 7: 151-165. https://journals.flvc.org/jcr/article/view/78431

Emery, W. J. and R.E. Thompson. 2014. Data analysis methods in physical oceanography. 3rd Edition. Amsterdam: Elsevier.

Enfield, D.B. 2001. Evolution and historical perspective of the 1997–1998 El Niño–Southern Oscillation Event. Bull. Mar. Sci., 69(1): 7-25. https://www.ingentaconnect.com/contentone/umrsmas/bullmar/2001/00000069/00000001/art00003#

Fick, S.E. and R.J. Hijmans. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Internat. J. Climat., 37(12): 4302-4315. https://doi.org/10.1002/joc.5086

Field, C.D. 1995. Impacts of expected climate change on mangroves. Hydrobiologia, 295(1-3): 75-81. https://doi.org/10.1007/BF00029113

Fiedler, P. and L. Talley. 2006. Hydrography of the eastern tropical Pacific: A review. Prog. Ocean., 69: 143-180. https://doi.org/10.1016/j.pocean.2006.03.008

Garcés-Ordóñez, O. y M. Bayona. 2019. Impactos de la contaminación por basura marina en el ecosistema de manglar de la Ciénaga Grande de Santa Marta Caribe colombiano. Rev. Mar. Cost., 11(2): 145–165. https://doi.org/10.15359/revmar.11-2.8

Garcés-Ordóñez, O., J.F. Saldarriaga-Vélez and L.F. Espinosa-Díaz. 2021. Marine litter pollution in mangrove forests from Providencia and Santa Catalina islands, after Hurricane IOTA path in the Colombian Caribbean. Mar. Poll. Bull., 168: 112471. https://doi.org/10.1016/j.marpolbul.2021.112471

Garcés-Ordoñez, O., M. Ríos Mármol, L.J. Vivas-Aguas, L.F. Espinosa-Díaz, D. Romero-D’Achiardi and M. Canals. 2023. Degradation factors and their environmental impacts on the mangrove ecosystem of the Mallorquin Lagoon, Colombian Caribbean. Wetlands, 43: 85. https://doi.org/10.1007/s13157-023-01731-1

Gilman, E., H. Van Lavieren, J. Ellison, V. Jungblut, E.Adler, L. Wilson, F. Areki, G. Brighouse, J. Bungitak, E. Dus, M. Henry, M. Kilman, E. Matthews, I. Sauni Jr., N. Teariki-Ruatu, S. Tukia and K. Yuknavage. 2006. Pacific island mangroves in a changing climate and rising sea. Unep Regional Seas Reports and Studies No. 179. Nairobi, Kenya. https://wedocs.Unep.org/bitstream/handle/20.500.11822/11812/rsrs179.pdf?sequence=1&isAllowed=y

Giri, C. and J. Long. 2016. Is the geographic range of mangrove forests in the conterminous United States really expanding? Sensors, 16(12): 2010. https://doi.org/10.3390/s16122010

Giri, C., E. Ochieng, L.L. Tieszen, Z. Shu, A. Singh, T. Loveland, J. Masek and N. Duke. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol. Biogeogr., 20: 154-159. https://doi.org/10.1111/j.1466-8238.2010.00584.x

González J.L. and I.D. Correa. 2001. Late Holocene evidence of coseismic subsidence on the San Juan Delta, Pacific coast of Colombia. J. Coast. Res., 17(2): 459-467. http://www.jstor.org/stable/4300196

Hickey, S.M., B. Radford, J.N. Callow, S.R. Phinn, C.M Duarte and C.E. Lovelock. 2021. ENSO feedback drives variations in dieback at a marginal mangrove site. Sci. Rep., 11: 8130. https://doi.org/10.1038/s41598-021-87341-5

Ideam. 2019. Estudio nacional del agua 2018. Bogotá. 452 p.

Ideam, PNUD, MADS, DNP, Cancillería. 2017. Tercera comunicación nacional de Colombia a la Convención Marco De Las Naciones Unidas Sobre Cambio Climático (CMNUCC). Bogotá.

Invemar. 2000. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta: Un enfoque de manejo adaptativo. Inf. Técn. Final 2001. Min. Medio Amb.–Banco Interam. Des.– Invemar, Santa Marta.

Invemar. 2013. Informe del estado de los ambientes y recursos marinos y costeros en Colombia: Año 2012. Ser. Publ. Per., 8.

Invemar. 2017. Elaboración del análisis de vulnerabilidad marino costera e insular ante el cambio climático para el país. Inf. Técn. Final – 001. 256 p. https://alfresco.invemar.org.co/share/s/JtVO02-EQ4KQUxh4_4S81w

Invemar. 2018. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Inf. Técn. Final 2018, Vol. 17. Santa Marta. 178 p.

Invemar. 2021. Informe del estado de los ambientes y recursos marinos y costeros en Colombia, 2020. Ser. Publ. Per., 3. https://www.invemar.org.co/documents/10182/0/Informe+del+estado+de+los+ambientes+marinos+y+costeros+2020/2bc6da3c-71ae-4271-a9a9-38130e8c7951

IPCC. 2014. Climate Change 2014: Synthesis Report. Contr. Working Groups I, II and III, Fifth Assess. Rep. Intergov. Panel Clim. Change. Pachauri, R.K. and L.A. Meyer (Eds)] IPCC, Geneva. 151 p. https://www.ipcc.ch/report/ar5/syr

IPCC. 2022. Climate change 2022: Impacts, adaptation and vulnerability. Contr. Working Group II, Sixth Assess. Rep. Intergov. Panel Clim. Change. Pörtner, H.-O., D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (Eds). Cambridge Univ.. Cambridge, UK. 3056 p. https://doi.org/10.1017/9781009325844

Jaramillo, F., L. Licero, I, Ahlen, S. Manzoni, J.A. Rodríguez-Rodríguez, A, Guittard, A. Hylin, J. Bolaños, J. Jawitz, S. Wdowinski, O. Martínez and L.F. Espinosa. 2018. Effects of hydroclimatic change and rehabilitation activities on salinity and mangroves in the Ciénaga Grande de Santa Marta, Colombia. Wetlands, 38: 55–767. https://doi.org/10.1007/s13157-018-1024-7

Kjerfve, B., U. Seeliger and L.D. De Lacerda. 2001. A summary of natural and human-induced variables in coastal marine ecosystems of Latin America. In: Seeliger, U. and B. Kjerfve (Eds). Coastal marine ecosystems of Latin America. Ecol. Stud., 144. Springer, Berlin, https://doi.org/10.1007/978-3-662-04482-7_24

Larkin, N.K. and D.E. Harrison. 2005. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32: L13705. https://doi.org/10.1029/2005GL022860

Leal, M. and M. Spalding (Eds). 2022. The state of the world’s mangroves 2022. Global Mangrove Alliance.

Legendre, P. and L. Legendre. 1998. Numerical ecology. Second Edition. Elsevier, Amsterdam.

Li, S., P. Chen, J. Huang, M. Hsueh, L. Hsieh, C. Lee and H. Lin. 2018. Factors regulating carbon sinks in mangrove ecosystems. Glob. Chang. Biol., 24: 4195–4210. https://doi.org/10.1111/gcb.14322

Lovelock, C. and R. Reef. 2020. Variable impacts of climate change on blue carbon. One Earth, 3: 195-211. https://doi.org/10.1016/j.oneear.2020.07.010

Lovelock, C., K. Krauss, M. Osland, R. Reef and M. Ball. 2016. The physiology of mangrove trees with changing climate. In: Goldstein, G. and L. Santiago (Eds). Tropical tree physiology. Vol. 6. Springer, Cham. https://doi.org/10.1007/978-3-319-27422-5_7

Macreadie, P.I., M.D.P Costa, T.B Atwood, D.A. Friess, J.J. Kelleway, H. Kennedy, C.E. Lovelock, O. Serrano and C.M. Duarte. 2021. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ., 2: 826–839. https://doi.org/10.1038/s43017-021-00224-1

McKee, K. and W.C. Vervaeke. 2018. Will fluctuations in salt marsh–mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?. Glob.Change Biol., 24: 1224–1238. https://doi.org/10.1111/gcb.13945

McKee, K.L., K.W Krauss and D.R. Cahoon. 2021. Does geomorphology determine vulnerability of mangrove coasts to sea-level rise? In: Sidik, F. and D.A. Fries (Eds). Dynamic sedimentary environments of mangrove coasts. Elsevier. https://doi.org/10.1016/B978-0-12-816437-2.00005-7

McLeod, E. and R. Salm. 2006. Managing mangroves for resilience to climate change. IUCN, Gland, Switzerland. 64 p. https://portals.iucn.org/library/sites/library/files/documents/2006-041.pdf

Morton, R.A., J.L. González, G.I. López and I.D. Correa. 2000. Frequent non-storm washover of barrier islands, Pacific coast of Colombia. J. Coast. Res., 16(1): 82-87. http://www.jstor.org/stable/4300013

Murillo-Sandoval, P., L. Fatoyinbo and M. Simard. 2022. Mangroves cover change trajectories 1984-2020: The gradual decrease of mangroves in Colombia. Front. Mar. Sci., 9:892946. https://doi.org/10.3389/fmars.2022.892946

Ning, Z.H., R.E. Turner, T. Doyle and K.K. Abdollahi. 2003. Integrated assessment of the climate change impacts on the Gulf Coast region. Gulf Coast Climate Change Assess. Counc. (GCRCC) and Louis. State Univ. Graphic Serv. 236 p. https://www.cakex.org/documents/integrated-assessment-climate-changeimpacts-gulf-coast-region

Olson, D.M. and E. Dinerstein. 2002. The global 200: priority ecoregions for global conservation. Ann. Missouri Bot. Gard., 89: 199–224. https://doi.org/10.2307/3298564

Parques Nacionales Naturales. 2018. Actualización plan de manejo Parque Nacional Natural Sanquianga 2018-2023. Parques Nacionales Naturales de Colombia. https://www.parquesnacionales.gov.co/wp-content/uploads/2020/10/plan-de-manejo-pnn-sanquianga.pdf

Pelckmans, I., J.P. Belliard, O. Gourgue, L.E. Domínguez-Granda and S. Temmerman. 2024. Mangroves as nature-based mitigation for ENSO-driven compound flood risks in a river delta. Hydrol. Earth Syst. Sci., 28: 1463–1476. https://doi.org/10.5194/hess-28-1463-2024

Perea-Ardila, M. y P. Murillo-Sandoval. 2022. La ganancia de manglar y sus implicaciones en el reservorio de carbono del Parque Nacional Natural Sanquianga en Colombia. Ecosistemas, 31(3): 2386. https://doi.org/10.7818/ECOS.2386

Poveda, G. and O.J. Mesa. 2000. On the existence of Lloró (the rainiest locality on Earth): enhanced ocean-atmosphere-land interaction by a low-level jet. Geophy. Res. Let., 27: 1675–1678. https://doi.org/10.1029/1999GL006091

Poveda, G., P. Waylen and R. Pulwarty. 2006. Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Pal., 234: 3-27. https://doi.org/10.1016/j.palaeo.2005.10.031

Poveda, G., J. Vélez, O.J. Mesa, A. Cuartas, J. Barco, R. Mantilla, J.F. Mejía, C. Hoyos, J. Ramírez, L. Ceballos, M. Zuluaga, P. Arias, B. Botero, M. Montoya, J.D. Giraldo and D. Quevedo. 2007. Linking long-term water balances and statistical scaling to estimate river flows along the drainage network of Colombia. J. Hyd. Eng. 12:4-13. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:1(4)

Restrepo, J.D. and A. Kettner. 2012. Human induced discharge diversion in a tropical delta and its environmental implications: The Patía River, Colombia. J. Hydrol., 424-425: 124-142. https://doi.org/10.1016/j.jhydrol.2011.12.037

Restrepo, J.D. and B. Kjerfve. 2000. Water discharge and sediment load from the western slopes of the Colombian Andes with focus on Rio San Juan. J. Geol., 108(1): 17-33. https://doi.org/10.1086/314390

Restrepo, J:D., B. Kjerfve, I.D. Correa and J. González. 2002. Morphodynamics of a high discharge tropical delta, San Juan River, Pacific coast of Colombia. Mar. Geol., 192(4): 355-381. https://doi.org/10.1016/S0025-3227(02)00579-0

Rodríguez-Rodríguez, J.A., P.C. Sierra-Correa, M.C. Gómez-Cubillos and L.V. Villanueva. 2018. Mangroves of Colombia. In: Finlayson, C., G. Milton, R. Prentice and N. Davidson (Eds). The wetland book. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4001-3_280

Sandilyan, S. and K. Kathiresan. 2012. Mangrove conservation: A global perspective. Biodivers. Conserv., 21: 3523–3542. https://doi.org/10.1007/s10531-012-0388-x.

Simard, M., T. Fatoyinbo, C. Smetanka, V.H. Rivera-Monroy, E. Castaneda, N. Thomas and T. Van der stocken. 2019. Global mangrove distribution, aboveground biomass, and canopy height. ORNL DAAC, Oak Ridge, USA. https://doi.org/10.3334/ORNLDAAC/1665

Simard, M., T. Fatoyinbo, N. Thomas, A. Stovall, A. Parra, M.W. Denbina and I. Hajnsek. 2023. A global map of mangrove canopy height with a spatial resolution of 12-meters. ORNL DAAC, Oak Ridge, USA. https://doi.org/10.3334/ORNLDAAC/2251

Snedaker, S.C. 1995. Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses. Hydrobiologia, 295: 43-49. https://doi.org/10.1007/BF00029109

Spalding, M. D., H.E. Fox, G.R. Allen, N. Davidson, Z.A. Ferdaña, M. Finlayson, B.S. Halpern, M.A. Jorge, A. Lombana, S.A. Lourie, K.D. Martin, E. McManus, J. Molnar, C.A. Recchia and J. Robertson. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience, 57: 573-583. https://doi.org/10.1641/B570707

Spalding, M., A. McIvor, F.H. Tonneijck, S. Tol and P. van Eijk. 2014. Mangroves for coastal defence. Guidelines for coastal managers & policy makers. Wetlands International, The Nature Conservancy. 42 p. https://www.nature.org/media/oceansandcoasts/mangroves-for-coastal-defence.pdf

Trenberth, K. 2005. Uncertainty in hurricanes and global warming. Science, 308: 1753-1754. https://www.science.org/doi/10.1126/science.1112551

Unep-Nairobi Convention/Usaid/Wiomsa. 2020. Guidelines on mangrove ecosystem restoration for the Western Indian Ocean Region. Unep, Nairobi, 71 p. https://www.nairobiconvention.org/CHM%20Documents/WIOSAP/guidelines/GuidelinesonMangroveRestorationForTheWIO.pdf

UNESCO. 1992. Coastal systems studies and sustainable development. Report COMAR Inter. Scient. Conf. UNESCO, Paris, 21-25 May 1991. 276 p. https://unesdoc.unesco.org/ark:/48223/pf0000112571

Ward, R., D. Friess, R. Day and R. Mackenzie. 2016. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Health Sustain., 2(4): e01211. https://doi.org/10.1002/ehs2.1211

West, R.C. 1956. Mangrove swamps of the Pacific coast of Colombia. Ann. Assoc. Am. Geogr., 46: 98-121. https://doi.org/10.1111/j.1467-8306.1956.tb01498.x Worthington, T.A., D.A. Andradi-brown, R. Bhargava, C. Buelow, P. Bunting, C. Duncan, L. Fatoyinbo, D.A. Fries, L. Goldberg, L. Hilarides, D. Lagomasino,

E. Landis, K. Longley-Wood, C. E. Lovelock, N. J. Murray, S. Narayan, A. Rosenqvist, M. Sievers, M. Simard, N. Thomas, P. Van Eijk, C. Zganjar and M. Spalding. 2020. Harnessing big data to support the conservation and rehabilitation of mangrove forests globally. One Earth, 2(5): 429-443. https://doi. org/10.1016/j.oneear.2020.04.018

Índice de riesgo del socioecosistema de manglar del Caribe de Colombia.

Descargas

Publicado

2024-07-02

Cómo citar

1.
Herrera Carmona JC, Prüssmann Uribe J, Abud Hoyos M, Zapata Padilla LA. Análisis de vulnerabilidad y riesgo climático del socioecosistema de manglar en Colombia. Bol. Investig. Mar. Costeras [Internet]. 2 de julio de 2024 [citado 21 de noviembre de 2024];53(2):103-32. Disponible en: http://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1308
سرور مجازی ایران Decentralized Exchange

Número

Sección

Articulos de investigación

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.

فروشگاه اینترنتی