Vol. 50 Núm. 2 (2021)
Articulos de investigación

Eficiencia de absorción en postlarvas de camarón blanco del Pacífico, Litopenaeus vannamei, alimentadas con una dieta de levadura marina de marismas de manglar

Patricio Colon Velasquez
Universidad Técnica de Machala
Biografía
Fulvia Solorzano-Reyes
BioMar Alimentsa Ecuador SA., Tambo, Guayaquil, Ecuador

Publicado 2021-11-17

Palabras clave

  • Absorción de alimento,
  • acuicultura estuarina,
  • manglares,,
  • microorganismos,

Cómo citar

1.
Velasquez PC, Solorzano-Reyes F. Eficiencia de absorción en postlarvas de camarón blanco del Pacífico, Litopenaeus vannamei, alimentadas con una dieta de levadura marina de marismas de manglar. Bol. Investig. Mar. Costeras [Internet]. 17 de noviembre de 2021 [citado 27 de diciembre de 2024];50(2):73-90. Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1012

Resumen

El presente estudio investigó la levadura marina como fuente de alimento en el camarón blanco Litopenaeus vannamei. Se determinó la eficiencia de absorción de levaduras midiendo la proporción de materia orgánica asimilada por las postlarvas de camarón. La levadura marina se aisló y se propagó en laboratorio a partir de una muestra de sedimento obtenida en una marisma de manglar. Seis etapas de desarrollo de postlarvas de camarón, desde PL-5 días hasta PL-35 días fueron alimentadas exclusivamente con tres concentraciones de levaduras (1,5 × 105, 3 × 105, 5 × 105 cel/mL). El promedio general de la absorción de levadura fue de 65,85 ± 11,42 %.
El análisis de varianza de dos vías ANOVA (p < 0,05) mostró que la eficiencia de absorción de levadura en post-larvas de camarón no se vio afectada por las concentraciones de levaduras; tampoco las concentraciones de levaduras interactuaron con la edad de las postlarvas. La eficiencia de absorción de 67,30 % registrada en postlarvas jóvenes (PL-5 a PL-15) fue significativamente diferente a la absorción
registrada en post-larvas de mayor edad (PL-20 a PL-35) con un promedio de 60,21 % (p < 0,05). La eficiencia de absorción relativamente alta de levadura en postlarvas de L. vannamei contribuye a una mejor comprensión del rol de los microorganismos como complemento nutricional en la acuicultura costera. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Ahmed, I., A. Haroon, M.N. Khan, H.S. Asadullah, H. Sahah, A. Nadeem, F. Saeed, S. Rehmat, U. Sahah, M. A. Abassi and M. A. Buzdar. 2019. Occurrence and biodiversity of marine yeast in mangrove ecosystem of Shabi Creek, Gwadar-Pakistan. Pure App. Biol., 8(1): 680-687. http://dx.doi.org/10.19045/bspab.2019.80008
  2. Athitahn, S. and V. Ramadhas. 2000. Bioconversion efficiency and growth in the white shrimp, Penaeus indicus (Milne Edwards) fed with decomposed mangroves leaves. ICLARM Quart., 23(1): 17-18.
  3. Bender, J. and P. Phillips. 2004. Microbial mats for multiple applications in aquaculture and bioremediation. Biores. Technol., 94(3): 229-238. https://doi.org/10.1016/j.biortech.2003.12.016
  4. Breteler, W.K. 1975. Food consumption, growth and energy metabolism of juvenile shore crabs, Carcinus maenas. Netherl. J. Sea Res., 9(3-4): 255-272.https://doi.org/10.1016/0077-7579(75)90002-2
  5. Brunson, J. F., R.P. Romaire and R.C. Reigh. 1997. Apparent digestibility of selected ingredients in diets for white shrimp Penaeus setiferus L. Aquacult.Nutr., 3(1): 9-16.
  6. Bush, S. R., B. Belton, D. Hall, P. Vandergeest, F. J. Murray, S. Ponte and P. Oosterveer. 2013. Certify Sustainable Aquaculture? Science, 341 (6150): 1067-1068. DOI: 10.1126/science.1237314
  7. Chi, Z., G. Liu, S. Zhao, J. Li and Y. Peng. 2010. Marine yeasts as biocontrol agents and producers of bio-products. Appl. Microbiol. Biotechnol., 86(5):1227-1241.
  8. Chi, Z., T. Liu, Z. Chi, G. Liu and Z. Wang. 2012. Occurrence and diversity of yeasts in the mangrove ecosystems in Fujian, Guangdong and Hainan provinces of China. Ind. J. Microbiol., 52(3): 346-353. doi:10.1007/s12088-012-0251-5
  9. Condrey, R. E., J. G. Gosselink and H.J. Bennett. 1972. Comprison of the assimilation of different diets by Penaeus setiferus and Penaeus aztecus. Fish. Bull., 70: 1281-1291
  10. Conover, R. J. 1966. Factors affecting the assimilation of organic matter by zooplankton and the question of superfluous feeding. Limnol. Oceanogr., 11(3):346-354. https://doi.org/10.4319/lo.1966.11.3.0346 DOI: 10.1007/s00253-010-2483-9.
  11. Evjemo, J. O., O. Vadstein and Y. Olsen. 2000. Feeding and assimilation kinetics of Artemia franciscana fed Isochrysis galbana (clone T. Iso). Mar. Biol., 136(6): 1099-1109. https://doi.org/10.1007/s002270000306
  12. Fang, X., D. Yu,A. Buentello, P. Zeng and D. A. Davis. (2016). Evaluation of new non-genetically modified soybean varieties as ingredients in practical diets for Litopenaeus vannamei. Farzanfar A. 2006. The use of probiotics in aquaculture. FEMS Immunol. Med. Microbiol.. Blackwell Pub, 48(2): 149-58. https://doi.org/10.1111/j.1574-695X.2006.00116.x
  13. Food and Agriculture Organization of the United Nations (FAO). 2019. FAO yearbook. Fish. Aquacult. Stat. 2017/FAO. Rome. 80 p.
  14. Gatesoupe, F. J. 2007. Live yeasts in the gut: natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture, 267(1): 20-30. https://doi.org/10.1016/j.aquaculture.2007.01.005
  15. Gelabert, R. and A. Pacheco. 2011. Selectivity of particle size by the shrimp Litopenaeus vannamei (Boone, 1931) larvae. Aquacult. Nutr., 17(3): 244-247.
  16. Kiatmetha, P., W. Siangdang, B. Bunnag, S. Senapin and B. Withyachumnarnkul. 2011. Enhancement of survival and metamorphosis rates of Penaeus monodon larvae by feeding with the diatom Thalassiosira weissflogii. Aquacult. Internat., 19(4): 599-609. https://doi.org/10.1007/s10499-010-9375-y Kupetz, M., S. Procopio, B. Sacher and T. Becker. 2015. Critical review of the methods of β-glucan analysis and its significance in the beer filtration process. Eur. Food Res. Technol, 241: 725. doi:10.1007/s00217-015-2498-7
  17. Lara–Flores, M., M. A. Olvera-Novoa, B. E. Guzmán-Méndez and W. López-Madrid. 2002. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture, 216: 193-201. https://doi.org/10.1016/S0044-8486(02)00277-6
  18. Lavens, P. and P. Sorgeloos. 2000. Experiences on importance of diet for shrimp postlarval quality. Aquaculture, 191(1-3): 169-176. https://doi.org/10.1016/S0044-8486(00)00426-9 Instituto de Investigaciones Marinas y Costeras
  19. Liao, I. 1985. A brief review of the larval rearing techniques of penaeid prawns. In First International Conference on the Culture of Penaeid Prawns/Shrimps, 4-7 December 1984, Iloilo City, Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center. 65-78 p.
  20. Liu, X. H., J. D. Ye, J. H. Kong, K. Wang and A. L. Wang. 2013. Apparent digestibility of 12 protein-origin ingredients for Pacific white shrimp Litopenaeus vannamei. NA J. Aquacult., 75(1): 90-98. Lucas, A. and J. J. Watson. 2002. Bioenergetics of aquatic animals. CRC Press.169 p.
  21. Martínez-Córdova, L. R., M. Emerenciano, A. Miranda-Baeza and M. Martínez-Porchas. 2015. Microbial-based systems for aquaculture of fish and shrimp: an updated review. Rev. Aquacult., 7: 131–148. doi:10.1111/raq.12058.
  22. McLean, E., B. Reid, D. Fegan, D. Kuhn and S. Craig. 2006. Total replacement of fishmeal with an organically certified yeast–based protein in pacific white shrimp (Litopenaeus Vannamei) diets: laboratory and field trials. Croatian J. Fish., 64(2): 47-58.
  23. Meena, D. K., P. Das, S. Kumar, S. C. Mandal, A. K. Prusty, S. K. Singh, M.S. Akhtar, B. K. Behera, K. Kumar, A.K. Pal and S. C. Mukherjee. 2013. Betaglucan: An ideal immunostimulant in aquaculture (a review). Fish Physiol. Biochem., 39(3): 431-457. doi:10.1007/s10695-012-9710-5
  24. Muller-Feuga, A., R. Robert, C. Cahu, J. Robin and P. Divanach. 2003. Uses of microalgae in aquaculture. Live Feeds in Marine Aquaculture. 1: 253-299.
  25. Northeastern Regional Aquaculture Center NRAC. 1993. Growing microalgae to feed bivalve larvae. Univ.Massachusetts. Norht Darmouth. NRAC Fact Sheet. No. 160. 8 p.
  26. Pathissery J. S. and P. Rosamma. 2016. Marine yeasts as feed supplement for Indian white prawn Fenneropenaeus indicus: screening and testing the efficacy. Int. J. Curr. Microbiol. App. Sci, 5(1): 55-70. doi:http://dx.doi.org/10.20546/ijcmas.2016.501.005
  27. Patra, S. and K. Mohamed. 2003. Enrichment of Artemia nauplii with the probiotic yeast Saccharomyces boulardii and its resistance against a pathogenic Vibrio. Aquacult. Internat., 11: 505. doi:10.1023/B:AQUI.0000004193.40039.54
  28. Piña, P., M. Nieves, L. Ramos-Brito, C.O. Chavira-Ortega and D. Voltolina. 2005. Survival, growth and feeding efficiency of Litopenaeus vannamei protozoea larvae fed different rations of the diatom Chaetoceros muelleri. Aquaculture, 249(1-4); 431-437.
  29. Qiu, X. and D.A. Davis. 2017. Evaluation of flash dried yeast as a nutritional supplement in plant-based practical diets for Pacific white shrimp Litopenaeus vannamei. Aquacul. Nutr., 23(6): 1244-1253.
  30. Rivera, L. M., L. E. Trujillo, J. M. Pais-Chanfrau, J. Nunez, J. Pineda, H. Romero, O. Tinoco, C. Cabrera and V. Dimitrov. 2018. Functional foods as stimulators of the immune sSystem of Litopenaeus vannamei cultivated in Machala, Province of El Oro, Ecuador. It. J. Food Sci., SI: 227-232.
  31. Rosas, C. and C. Vanegas. 1993. Energy balance of Callinectes ratbunae in floating cages in a tropical coastal lagoon. J. World Aquacult. Soc., 21: 257-262
  32. Rumsey, G. L., S. G. Hughes, R. R. Smith, J. E. Kinsella and K. J. Shetty. 1991. Digestibility and energy values of intact, disrupted and extracts from brewer’s dried yeast fed to rainbow trout (Oncorhynchus mykiss). An. Feed Sci. Technol., 33(3): 185-193. doi:10.1016/0377-8401(91)90059-2
  33. Sahlmann, C., B. Djordjevic, L. Lagos, L. T. Mydland, B. Morales-Lange, J. Hansen, R. Anestad, L. Mercado, M. Bjalonovic, C. McLean and M. Øverland. 2019. Yeast as a protein source during smoltification of Atlantic salmon (Salmo salar), enhances performance and modulates health. Aquaculture, 513: 734396. https://doi.org/10.1016/j.aquaculture.2019.734396
  34. Sarlin, P. J. and R. Philip. 2016. Marine yeasts as feed supplement for Indian white prawn Fenneropenaeus indicus: screening and testing the efficacy. Int. J. Curr. Microbiol. App. Sci, 5(1): 55-70. doi: http://dx.doi.org/10.20546/ijcmas.2016.501.005
  35. Shelby, R. A., C. Lim, M. Yildirim-Aksoy, T. L. Welker and P. H. Klesius. 2009. Effects of yeast oligosaccharide diet supplements on growth and disease resistance in juvenile nile tilapia, Oreochromis niloticus. J. App. Aquacult., 21(1): 61-71. doi:10.1080/10454430802694728
  36. Sorgeloos, P., P. Dhert and P. Candreva. 2001. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture, 200(1): 147-159. https://doi.org/10.1016/S0044-8486(01)00698-6
  37. Sukumaran, V., D. W. Lowman, T. P. Sajeevan and R. Philip. 2010. Marine yeast glucans confer better protection than that of baker’s yeast in Penaeus monodon against white spot syndrome virus infection. Aquacult. Res., 41(12): 1799. doi:10.1111/j.1365-2109.2010.02520.x
  38. Terrazas-Fierro, M., R. Civera-Cerecedo, L. Ibarra-Martínez, E. Goytortúa-Bores, M. Herrera-Andrade and A. Reyes-Becerra. 2010. Apparent digestibility of dry matter, protein, and essential amino acid in marine feedstuffs for juvenile whiteleg shrimp Litopenaeus vannamei. Aquaculture, 308(3-4): 166-173.
  39. Urabe, J. 1991. Effect of food concentration on the carbon balance of Bosmina longirostris. Freshwat, Biol., 26: 57-68.
  40. Vieira, É. D., M. D. G. S. Andrietta and S. R. Andrietta. 2013. Yeast biomass production: a new approach in glucose-limited feeding strategy. Braz. J. Microbiol., 44(2): 551-558. http://dx.doi.org/10.1590/S1517-83822013000200035
  41. Villamil-Díaz, L., and M. A. Martínez-Silva. 2009. Probiotics as a biotechnological tool in shrimp culture: a review. Bol. Invest. Mar- Cost., 38(2): 165-187.
  42. Wasielesky, W., H. Atwood, A. Stokes and C. L. Browdy. 2006. Effect of natural production in a zero exchange suspended microbial floc based superintensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1): 396-403. doi:10.1016/j.aquaculture.2006.04.030
  43. Zhao, L., W. Wang, X. Huang, T. Guo, W. Wen, L. Feng and L. Wei. 2017. The effect of replacement of fish meal by yeast extract on the digestibility, growth and muscle composition of the shrimp Litopenaeus vannamei. Aquacult. Res., 48(1): 311-320. doi:10.1111/are.12883 204
  44. Zheng, C. N. and W. Wang. 2017. Effects of Lactobacillus pentosus on the growth performance, digestive enzyme and disease resistance of white shrimp, Litopenaeus vannamei (Boone, 1931). Aquac. Res., 48: 2767–2777. doi:10.1111/are.13110
  45. Zhenming, C., L. Zhiqiang, G. Lingmei, G. Fang, M. A. Chunling, W. Xianghong and L. I. Haifeng. 2006. Marine yeasts and their applications in mariculture. J. Oc. Univ. China, 5(3): 251-256. https://doi.org/10.1007/s11802-006-0010-5
  46. Zhou, Y. G., D. A. Davis and A. Buentello. 2015. Use of new soybean varieties in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquacult. Nutr., 21(5): 635-643.