Vol. 49 Núm. SuplEsp (2020)
Articulos de investigación

Peces criptobentónicos en el Parque Nacional Natural Uramba Bahía Málaga (Colombia), Pacífico Oriental Tropical

Gustavo Adolfo Castellanos-Galindo
Universidad del Valle
Diana Medina-Contreras
Universidad del Valle
Juan Felipe Lazarus
Universidad del Valle
Jaime Ricardo Cantera Kintz
Universidad del Valle

Publicado 2020-12-19

Palabras clave

  • ictiofauna criptica,
  • Gobiidae,
  • Labrisomidae,
  • ecología estuarina,
  • arrecifes rocosos

Cómo citar

1.
Castellanos-Galindo GA, Medina-Contreras D, Lazarus JF, Cantera Kintz JR. Peces criptobentónicos en el Parque Nacional Natural Uramba Bahía Málaga (Colombia), Pacífico Oriental Tropical. Bol. Investig. Mar. Costeras [Internet]. 19 de diciembre de 2020 [citado 22 de enero de 2025];49(SuplEsp):119-36. Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1090

Resumen

Los peces criptobentónicos contribuyen de manera significativa a la dinámica trófica de los ecosistemas costeros. Este estudio tuvo como objetivo determinar la composición de esta comunidad y comprobar si su estructura difiere temporal y espacialmente en el Parque Nacional Natural Uramba Bahía Málaga (Pacífico Oriental Tropical). Los peces se recolectaron utilizando sustratos artificiales en tres zonas, entre junio de 2008 y agosto de 2009. Se registraron 26 especies, pertenecientes a 11 familias. Gobiidae y Labrisomidae fueron las familias más representativas (especies: 34,6 % e individuos: 66 %). La riqueza y abundancia aumentó en un gradiente del interior hacia el exterior del parque. Utilizando estadística multivariada, se identificó un patrón espacial en la estructura de la comunidad, con localidades internas significativamente diferentes de las medias y externas. Cerdale ionthas, Gobiosoma seminudum, Starksia fulva y Gobulus hancocki
fueron responsables de esta diferenciación (contribución > 59 %). El uso de sustratos artificiales para tomar muestras de peces criptobentónicos
demostró ser una forma eficiente de identificar una parte de la ictiofauna que no había sido identificada mediante técnicas de muestreo tradicionales y también fue útil para comparar la variabilidad espacial de esta comunidad. La comparación con comunidades de peces criptobentónicos en otras regiones biogeográficas indica que, debido a la baja riqueza de especies en el Pacífico Oriental Tropical, estas comunidades tanto en Colombia como en México muestran baja redundancia funcional y considerables diferencias en sus preferencias tróficas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Ackerman, J.L. and D.R. Bellwood. 2000. Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar. Ecol. Prog. Ser., 206: 227-237. https://doi.org/10.3354/meps206227
  2. Ackerman, J.L. and D.R. Bellwood. 2002. Comparative efficiency of clove oil and rotenone for sampling tropical reef fish assemblages. J. Fish Biol., 60: 893-901. https://doi.org/10.1111/j.1095-8649.2002.tb02416.x
  3. Alzate, A., F.A. Zapata, and A. Giraldo. 2014. A comparison of visual and collection-based methods for assessing community structure of coral reef fishes in the Tropical Eastern Pacific. Rev. Biol. Trop., 62: 359-371. https://doi.org/10.15517/rbt.v62i0.16361
  4. Anker, A. and J.F. Lazarus. 2015a. Description of two new associated infaunal decapod crustaceans (Axianassidae and Alpheidae) from the tropical eastern Pacific. Pap. Avulsos Zool., 55(8):115-129. https://doi.org/10.1590/0031-1049.2015.55.08
  5. Anker, A. and J.F. Lazarus. 2015b. On two new species of the shrimp genus Salmoneus Holthuis, 1955 (Decapoda, Caridea, Alpheidae) from the tropical eastern Pacific. Zootaxa, 3957(5): 520-534. https://doi.org/10.11646/zootaxa.3957.5.2
  6. Anker, A. and J.F. Lazarus. 2017. First finding of the shrimp genus Harperalpheus Felder & Anker, 2007 in the eastern Pacific, with description of a new species from Bahía Málaga, Colombia (Malacostraca: Decapoda: Alpheidae). Zootaxa, 4329(2): 196-200. https://doi.org/10.11646/zootaxa.4329.2.7
  7. Balart, E.F., A. González-Cabello, R.C. Romero-Ponce, A. Zayas-Álvarez, M. Calderón-Parra, L. Campos-Dávila, and L.T. Findley. 2006. Length-weight relationships of cryptic reef fishes from southwestern Gulf of California, Mexico. J. Appl. Ichthyol., 22: 6-318. https://doi.org/10.1111/j.1439-0426.2006.00670.x
  8. Barletta, M., U. Saint-Paul, A. Barletta-Bergan, W. Ekau, and D. Schories. 2002. Spatial and temporal distribution of Myrophis punctatus (Ophichthidae) and associated fish fauna in a northern Brazilian intertidal mangrove forest. Hydrobiologia, 426: 65-74. https://doi.org/10.1023/A:1003939000270
  9. Beldade, R. and E.J. Gonçalves. 2007. An interference visual census technique applied to cryptobenthic fish assemblages. Vie et Milieu, 57: 61-65.
  10. Betancur, R., E.O. Wiley, G. Arriata, A. Acero, N. Bailly, M. Miya, G. Lecointre, and G. Ortí. 2017. Phylogenetic classification of bony fishes. BMC Evol. Biol., 17: 162. https://doi.org/10.1186/s12862-017-0958-3
  11. Brandl, S.J., L. Tornabene, C.H.R. Goatley, J.M. Casey, R.A. Morais, I.M. Côté, C.C. Baldwin, V. Parravicini, N.M.D. Schiettekatte, and D.R. Bellwood. 2019. Demographic dynamics of the smallest marine vertebrate fuel coral reef ecosystem functioning. Science, 364: 1189-92. https://doi.org/10.1126/science.aav3384
  12. Cantera-Kintz, J.R. 1991. Etude structurale des mangroves et des peuplements macrobenthiques littoraux de deux baies du Pacifique colombien (Malaga et Buenaventura), rapport avec les conditions du milieu et les perturbations anthropiques. Ph.D. Thesis, Univ Aix-Marseille II, Marseille. 429 p.
  13. Cantera-Kintz, J.R., R. Neira y C. Ricaurte. 1998. Bioerosión en la costa pacífica colombiana: un estudio sobre la biodiversidad, la ecología y el impacto de los animales destructores de los acantilados rocosos. Fondo FEN Colombia, Bogotá. 135 p.
  14. Cantera-Kintz, J.R., E. Londoño-Cruz, L.M. Mejía-Ladino, L. Herrera-Orozco, C.A. Satizabal, and N. Uribe-Castañeda. 2013. Environmental issues of a Marine Protected Area in a tectonic estuary in the Tropical Eastern Pacific: Uramba (Malaga Bay, Colombia). context, biodiversity, threats and challenges. J. Water Res. Prot., 5: 1037-1047. https://doi.org/10.4236/jwarp.2013.511109
  15. Carassou, L., C. Mellin, and D. Pontón. 2009. Assessing the diversity and abundances of larvae and juveniles of coral reef fish: a synthesis of six sampling techniques. Biodivers. Conserv., 18: 355-371. https://doi.org/10.1007/s10531-008-9492-3
  16. Casey J.M., C.P. Meyer, F. Morat, S.J. Brandl, S. Planes, and V. Parravicini. 2019. Reconstructing hyperdiverse food webs: gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol., 10: 1157-1170. https://doi.org/10.1111/2041-210X.13206
  17. Castellanos-Galindo, G.A. and U. Krumme. 2013. Tidal, diel and seasonal effects on intertidal mangrove fish in a high-rainfall area of the Tropical Eastern Pacific. Mar. Ecol. Prog. Ser., 494: 249-265. https://doi.org/10.3354/meps10512
  18. Castellanos-Galindo, G.A., A. Giraldo, and E.A. Rubio. 2005. Community structure of an assemblage of tidepool fishes on a Tropical Eastern Pacific rocky shore, Colombia. J. Fish Biol., 67: 392-408. https://doi.org/10.1111/j.0022-1112.2005.00735.x
  19. Castellanos-Galindo G.A., J.A. Caicedo-Pantoja, L.M. Mejía-Ladino y E. Rubio. 2006. Peces marinos y estuarinos de Bahía Málaga, Valle del Cauca, Pacífico colombiano. Biota Colomb., 7(2): 263-282.
  20. Castellanos-Galindo, G.A., A. Giraldo, and F.A. Zapata. 2014. Tidepool fish assemblages of Gorgona Island, Colombian Pacific coast: a local and regional comparison. Rev. Biol. Trop., 62: 373-390.
  21. Chasqui L., A. Polanco, A. Acero P., P.A. Mejía-Falla, A. Navia, L.A. Zapata y J.P. Caldas (Eds). 2017. Libro rojo de peces marinos de Colombia. Instituto de Investigaciones Marinas y Costeras Invemar y Ministerio de Ambiente y Desarrollo Sostenible, Santa Marta. 552 p.
  22. Depczynski, M. and D.R. Bellwood. 2003. The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar. Ecol. Prog. Ser., 256: 183-191. https://doi.org/10.3354/meps256183
  23. Enochs, I.C., L.T. Toth, V.W. Brandtneris, J.C. Afflerbach, and D.P. Manzello. 2011. Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Mar. Ecol. Prog., 438: 105-118. https://doi.org/10.3354/meps09259
  24. Froese, R. and D. Pauly. 2019. FishBase. https://www.fishbase.se 15/11/2019.
  25. Glynn, P.W. 2006. Fish utilization of simulated coral reef frameworks versus eroded rubble substrates off Panama, eastern Pacific. Proc. Coral Reef Symp., 1: 250-256.
  26. González-Cabello, A. and D.R. Bellwood. 2009. Local ecological impacts of regional biodiversity on reef fish assemblages. J. Biogeogr., 36: 1129-1137. https://doi.org/10.1111/j.1365-2699.2008.02065.x
  27. Guevara-Fletcher, C.E., J.R. Cantera-Kintz, L.M. Mejía-Ladino, and F.A. Cortes. 2011. Benthic macrofauna associated with submerged bottoms of a tectonic estuary in Tropical Eastern Pacific. J. Mar. Sci., 2011: 1-13. https://doi.org/10.1155/2011/193759
  28. Loreau, M. 2004. Does functional redundancy exist? Oikos, 104(3): 606-611. https://doi.org/10.1111/j.0030-1299.2004.12685.x
  29. Lozano, S. and F.A. Zapata. 2003. Short-term temporal patterns of early recruitment of coral reef fishes in the Tropical Eastern Pacific. Mar. Biol., 142: 399–409. https://doi.org/10.1007/s00227-002-0948-9
  30. Martínez, J.O. and E. López-Ramos. 2011. High-resolution seismic stratigraphy of the late Neogene of the central sector of the Colombian Pacific continental shelf: a seismic expression of an active continental margin. J. S. Am. Earth. Sci., 31: 28-44. https://doi.org/10.1016/j.jsames.2010.09.003
  31. Medina-Contreras, D., J.R. Cantera-Kintz, A. Sánchez-González, and E. Mancera. 2018. Food web structure and trophic relations in a riverine mangrove system in the tropical eastern Pacific, central coast of Colombia. Estuaries Coast, 41(5): 1511-1521. https://doi.org/10.1007/s12237-017-0350-y
  32. Mellin, C. and D. Pontón. 2009. Assemblages of reef fish settling on artificial substrates: effect of ambient habitat over two temporal scales. Mar. Freshwater. Res., 60: 1285-1297. https://doi.org/10.1071/MF08319
  33. Oksanen, J.F., G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs, and H. Wagner. 2019. vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan 20/02/2020.
  34. Polidoro, B., T. Brooks, K.E. Carpenter, G.J. Edgar, S. Henderson, J. Sanciangco, and D.R. Robertson. 2012. Patterns of extinction risk and threat for marine vertebrates and habitat-forming species in the Tropical Eastern Pacific. Mar. Ecol. Prog. Ser., 448: 93-104. https://doi.org/10.3354/meps09545
  35. R Core Team. 2019. R: a language and environment for statistical computing. https://www.R-project.org 05/12/2019.
  36. Ransome, E., J.B. Geller, M. Timmers, M. Leray, A. Mahardini, A. Sembiring, A.G. Collins, and C. Meyer, C.P. (2017). The importance of standardization for biodiversity comparisons: a case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo’orea coral reefs, French Polynesia. PloS ONE, 12(4), e0175066. https://doi.org/10.1371/journal.pone.0175066
  37. Robertson, D.R. and G.R. Allen. 2008. Shorefishes of the Tropical Eastern Pacific online information system. Smithsonian Tropical Research Institute, Balboa. https://biogeodb.stri.si.edu/sftep 05/10/2009.
  38. Robertson, D.R. and W.F. Smith-Vaniz. 2008. Rotenone: an essential but demonized tool for assessing marine fish biodiversity. Bioscience, 58(2): 165-170. https://doi.org/10.1641/B580211
  39. Robertson, D.R., G.D. Green, and C.B. Victor. 1988. Temporal coupling of production and recruitment of larvae of a Caribbean reef fish. Ecology, 69: 370-381. https://doi.org/10.2307/1940435
  40. Smith-Vaniz, W.F., H.L. Jelks, and L.A. Rocha. 2006. Relevance of cryptic fishes in biodiversity assessments: a case study at Buck Island Reef National Monument, St. Croix. Bull. Mar. Sci., 79: 17-48.
  41. Valles, H., D.L. Kramer, and W. Hunte. 2006. A standard unit for monitoring recruitment of fishes to coral reef rubble. J. Exp. Mar. Biol. Ecol., 336: 171-183. https://doi.org/10.1016/j.jembe.2006.05.005
  42. Willis, T.J. 2001. Visual census methods underestimate density and diversity of cryptic reef fishes. J. Fish Biol., 59: 1408-1411. https://doi.org/10.1006/jfbi.2001.1721
  43. Zimmerman, T.L. and J.W. Martin. 2004. Artificial reef matrix structures (ARMS): an inexpensive and effective method for collecting coral reef-associated invertebrates. Gulf Caribb. Res., 16: 59-6. https://doi.org/10.18785/gcr.1601.08