Vol. 53 Núm. 1 (2024)
Articulos de investigación

Inmunotoxicidad y daño lisosomal en la ostra Pinctada imbricata (Röding 1758) expuesta a lubricantes usados de motores de automóviles

Edgar Alexander Zapata Vivenes
Escuela de Ciencias, Nucleo de Sucre, Universidad de Oriente
Biografía
Gabreial Sanchez
Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Nucleo de Sucre, Universidad de Oriente, Venezuela
Leida Marcano
Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Nucleo de Sucre, Universidad de Oriente, Venezuela

Publicado 2024-01-01

Palabras clave

  • Hemocito; desestabilidad lisosomal; aceite; inmunología; estrés

Cómo citar

1.
Zapata Vivenes EA, Sanchez G, Marcano L. Inmunotoxicidad y daño lisosomal en la ostra Pinctada imbricata (Röding 1758) expuesta a lubricantes usados de motores de automóviles. Bol. Investig. Mar. Costeras [Internet]. 1 de enero de 2024 [citado 23 de enero de 2025];53(1):9-24. Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1208

Resumen

En este estudio se evaluaron los efectos que ocasiona la exposición a fracciones acuosas de lubricantes usados de motores de automóviles (Faluma) sobre parámetros hematológicos, sistema inmune, estabilidad de la membrana lisosomal de hemocitos y niveles peroxidación
lipídica y lisozimas en la glándula digestiva de la ostra perla Pinctada imbricada. Las ostras fueron expuestas a 0, 1, 10 y 20 % v/v de Faluma durante diferentes períodos: 3, 5 y 7 días, en sistema estático de acuarios bajo condiciones controladas (oxigenación 6 mg/L; 25 ± 1 °C; pH 8.0 y 36 ‰). Durante el período temprano de exposición fue observado un aumento en el número total de hemocitos (NTH) de ostras expuestas a 10 % de Faluma. En ostras expuestas a 20 % al séptimo día se observó un descenso en los parámetros inmunohematológicos, asociados a una elevada desestabilización de la membrana lisosomal y contenido de malondialdehido (MDA). Las ostras mostraron respuestas celulares compensatorias a bajas  concentraciones de Faluma, resultando mermadas durante la exposición aguda. Se evidenciaron efectos immunomodulatorios inducidos por la mezcla de compuestos xenobióticos contentivos en Faluma. Las respuestas moleculares e inmunecelulares estimadas en P. imbricada pueden suministrar información sobre los cambios en la fisiología normal de organismos que habitan
ambientes impactados por mezclas complejas de xenobióticos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Aliko, V., G. Hajdaraj, A. Caci and C. Faggio. 2015. Copper induced lysosomal membrane destabilisation in haemolymph cells of mediterranean green
  2. crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania). Braz. Arch. Biol. Technol. 58(5):750–756. https://doi.org/10.1590/s1516-
  3. Allam, B. and D. Raftos. 2015. Immune responses to infectious diseases in bivalves. J. Invert. Pathol., 131: 121–136. https://doi.org/10.1016/j.jip.2015.05.005
  4. Auguste, M., Balbi, T., Ciacci, C., Canonico, B., Papa, S., Borello, A., Vezzulli, L., Canesi, L. 2020. Shift in immune parameters after repeated exposure to
  5. nanoplastics in the marine bivalve Mytilus. Front Immunol. 15: 11:426. https://doi.org/10.3389/fimmu.2020.00426
  6. Auguste, M., T. Balbi, C. Ciacci, B. Canonico, S. Papa, A. Borello, L. Vezzulli, L. Canesi, L. 2020. Shift in immune parameters after repeated exposure to
  7. nanoplastics in the marine bivalve Mytilus. Front Immunol. 15: 11:426. https://doi.org/10.3389/fimmu.2020.00426
  8. Bachère, E., R.D. Rosa, P.M. Schmitt, A. Poirier and N. Merou. 2015. The new insights into the oyster antimicrobial defense: cellular, molecular and genetic
  9. view. Fish and Shellfish Immunology, 2015, 46 (1), pp.50-64. https://doi.org/10.1016/j.fsi.2015.02.040
  10. Balbi, T., M. Auguste, C. Ciacci and L. Canesi. 2021. Immunological Responses of Marine Bivalves to Contaminant Exposure: Contribution of the -Omics
  11. Approach. Front Immunol. 12: 618726. https://doi.org/10.3389/fimmu.2021.618726
  12. Basria, S.M.N., R.I. Mydin and S. Okekpa. 2019. Reactive oxygen species, cellular redox homeostasis and cancer. homeostasis–an integrated vision. In:
  13. Lasacosvitsch F, S. Dos Anjos Garnes (Eds) BiotechOpen, London. https://doi.org/10.5772/intechopen.76096
  14. Burgos-Aceves, M. A. and C. Faggio. 2017. An approach to the study of the immunity functions of bivalve haemocytes: Physiology and molecular aspects.
  15. Fish & Shellfish Immunology, 67, 513–517. https://doi.org/10.1016/j.fsi.2017.06.042
  16. Cvengros, J., T. Liptaj and N. Pónayová. 2017. Study of polyaromatic hydrocarbons in current used motor oils, Int. J. Petrochem. Sci. Eng., 2(7) 219-226.
  17. https://doi.org/10.15406/ipcse.2017.02.00060
  18. Freitas, J.S., T.S. Boscolo-Pereira, C.N. Pereira-Boscolo, M. Navarro-García, C.A. de Oliveira-Rivero and E.A. De Almeida. 2020. Oxidative stress,
  19. biotransformation enzymes and histopathological alterations in Nile tilapia (Orechromis niloticus) exposed to new and used automotive lubricant oil.
  20. Comp. Physiol., 234: 1-11. https://doi.org/10.1016/j.cbpc.2020.108770
  21. Goven, A. and J. Kennedy. 1996. Environmental pollution and toxicity in invertebrates: An earthworm model for immunotoxicology. Adv. Comp. Environ.
  22. Physiol., 24: 170-211. https://doi.org/10.1007/978-3-642-79847-4_7
  23. He, L., T. He, S. Farrar, L. Ji, T. Liu and X. Ma. 2017. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell
  24. Physiol. Biochem., 44: 532-553. https://doi.org/10.1159/000485089
  25. Hwang, H.M., B. Stanton, T. Mcbride and M. Anderson. 2014. Polycyclic aromatic hydrocarbon body residues and lysosomal membrane destabilization
  26. in mussels exposed to the Dubai Star bunker fuel oil (intermediate fuel oil 380) spill in San Francisco Bay. Environ. Toxicol. Chem., 33: 1117–1121.
  27. https://doi.org/10.1002/etc.2518
  28. Jiang Y, Tang X, Sun T, Wang and Y. BDE-47 Exposure Changed the Immune Function of Haemocytes in Mytilus edulis: An Explanation Based on ROSMediated
  29. Pathway. Aquat Toxicol (2017) 182:58–66. https://doi.org/10.1016/j.aquatox.2016.11.010
  30. Liao, Y., C. Cai, C. Yang, Z. Zheng, Q. Wang, X. Du and Y. Deng. 2020. Effect of protein sources in formulated diets on the growth, immune response, and
  31. intestinal microflora of pearl oyster Pinctada fucata martensii. Aquac. Rep., 16: 100253. https://doi.org/10.1016/j.aqrep.2019.100253
  32. Lodeiros, C.J., L. Freites, A. Márquez, M.E. Glem, M. Guevara and P.E. Saucedo. 2016. Comparative growth and survival of spat of the Caribbean pearl oyster,
  33. Pinctada imbricata cultivated indoor with microalgae diets and outdoor with natural diet. Aquacul. Nutr., 23(3): 511–522. https://doi.org/10.1111/anu.12419
  34. López-Landavery, E.A., G. Amador-Cano, M.A. Tripp-Valdez, N. Ramírez-Álvarez, F. Cicala, R.J.E. Gómez-Reyes, F. Díaz, A.D. Re-Araujo and C.E.
  35. Galindo-Sánchez. 2022. Hydrocarbon exposure effect on energetic metabolism and immune response in Crassostrea virginica. Marine Pollution Bulletin.
  36. :113738. https://doi.org/10.1016/j.marpolbul.2022.113738.
  37. Lowe, D., M. Moore and B. Evans. 1992. Contaminant impact of interactions of molecular probes with lysosomes in living hepatocytes from dab Limanda
  38. limanda. Mar. Ecol. Prog. Ser., 91 (1): 135-140. https://doi.org/10.3354/meps091135
  39. Lowry, O., N. Rosebroungh, A. Farr and R. Randall. 1951. Protein measurement with the folin reagent. J. Biol. Chem., 193: 265-275.
  40. Mansour, C., F.B. Taheur and R. Omrani. 2020. Immune biomarker and hydrocarbon concentrations in carpet shell clams (Ruditapes decussatus) collected
  41. from a Mediterranean coastal lagoon. Euro-Mediterr J. Environ. Integr., 5: 11. https://doi.org/10.1007/s41207-020-0147-4
  42. Martínez-Gómez, C., J. Benedicto, J.A. Campillo and M. Moore. 2008. Application and evaluation of the neutral red retention (NRR) assay for lysosomal
  43. stability in mussel populations along the Iberian Mediterranean coast. J. Environ. Monit., 10(4): 490. https://doi.org/10.1039/b800441m
  44. Matozzo, V., M. Giacomazzo, L. Finos, M.G. Marin, L. Bargelloni and M. Milan. 2013. Can ecological history influence immunomarker responses and
  45. antioxidant enzyme activities in bivalves that have been experimentally exposed to contaminants? A new subject for discussion in “eco-immunology”
  46. studies. Fish Shell. Immunol., 35(1): 126–135. https://doi.org/10.1016/j.fsi.2013.04.013
  47. Méthé, D., L.A. Comeau, H. Stryhn, J.F. Burka, T. Landry and J. Davidson. 2017. Haemolymph fluid osmolality influences the neutral-red retention assay
  48. in the eastern oyster Crassostrea virginica, J. Molluscan Stud. 83: 229–234. https://doi.org/10.1093/mollus/eyw050
  49. Nusetti, O., L. Marcano, E. Zapata, M. Escalpés, S. Nusetti y C. Lodeiros. 2004. Respuestas inmunológicas y de enzimas antioxidantes en la ostra perla Pinctada
  50. imbricata (Mollusca: Pteridae) expuesta a niveles subletales de fuel oil Nº6. Interciencia, 29(6): 324-328. http://ve.scielo.org/scielo.php?script=sci_
  51. arttextypid=S0378-18442004000600008ylng=esynrm=iso
  52. Ohkawa, H., N. Ohishi and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Rev. Anal. Biochem. 95: 351–358.
  53. https:// doi. org/10.1016/0003-2697(79)90738
  54. Olonisakin, A., A. Adebayo and M.O. Aremu. 2005. Metal concentrations of fresh, used and treated crankcase oil. Biosci. Biotech. Res. Asia; 3: 187-191.
  55. Available from: http://www.biotech-asia.org/?p=4361
  56. Parisi, M.G., J. Pirrera, C.M. La Corte, D. Dara, M. Parrinello and Cammarata. 2021. Effects of organic mercury on Mytilus galloprovincialis hemocyte
  57. function and morphology. J. Comp. Physiol. B; 191: 143–158. https://doi.org/10.1007/s00360-020-01306-0
  58. Renault, T. 2015. Immunotoxicological effects of environmental contaminants on marine bivalves. Fish Shellfish Immunol., 46(1): 88–93. https://doi.
  59. org/10.1016/j.fsi.2015.04.011
  60. Romero-Fereira, P., D. Arrieche, V. Acosta, L. Pérez and C. Lodeiros. 2017. Gametogenic cycle of the oyster, Pinctada imbricata, in suspended culture in
  61. the Gulf of Cariaco, Venezuela. Lat. Am. J. Aquat. Res.;45(1): 139-148. https://doi.org/10.3856/vol45-issue1-fulltext-13
  62. Sun, S., W. Shi, Y. Tang, Y. Han, X. Du, W. Zhou, Y. Hu, C. Zhou and G. Liu. 2020. Immunotoxicity of petroleum hydrocarbons and microplastics alone
  63. or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms. Sci. Total Environm., 728: https://doi.org/10.1016/j.
  64. scitotenv.2020.138852
  65. Strober, W. 2015. Trypan blue exclusion test of cell viability. Curr. Protoc. Im. 2 111, https://doi.org/10.1002/0471142735.ima03bs111
  66. Sokal, R. and F. Rohlf. 2012. Biometry. 4th Ed. W.H. Freeman. New York.
  67. Trivedi, P.C., J.J. Bartlett and T. Pulinilkunnil. 2020. Lysosomal biology and function: Modern view of cellular debris bin. Cells, 9(5): 1131. https://
  68. doi. org/10.3390/cells9051131
  69. Vásquez, G., R. Crescini, W. Villalba, J. Mogollón y L. Troccoli. 2015. Aspectos biológicos básicos de Pinctada imbricata (Bivalvia: Pteriidae) en la laguna
  70. de La Restinga, isla de Margarita, Venezuela. Rev, Cienc. Mar. Cost.,7: 117-132. https://doi.org/10.15359/revmar.7.8
  71. Villegas, L., C. Lodeiros, K. Malavé, J. Revilla y M. Lemus. 2015. Efecto subletal del cadmio en la ostra perla del Caribe Pinctada imbricata (Pteroida:
  72. Pteriidae) Röding, 1798. Saber; 27 (1): 39-45
  73. Week, J., V. Sharp and T. Williams. 1997. Contaminant-induced lisosomal membrane damage in blood cells of green mussel Perna viridis (Mytilidae): a
  74. field transplant study. Technical Report WC/97/64. DFID-TDR Proyect R6191. Land-derived contaminant influx to Jakarta Bay, Indonesia; 2: 1-30.
  75. Wei J., B Liu, S Fan, B Zhang, J Su and D. Yu. 2017. Serum immune response of pearl oyster Pinctada fucata to xenografts and allografts. Fish Shellfish
  76. Immunol., 62: 303-310. https://doi.org/10.1016/j.fsi.2017.01.039
  77. Xie, J., C. Zhao, Q. Han, H. Zhou, Q. Li and X. Diao. 2017. Effects of pyrene exposure on immune response and oxidative stress in the pearl oyster, Pinctada
  78. martensii. Fish Shellfish Immunol., 63: 237–244. https://doi.org/10.1016/j.fsi.2017.02.032
  79. Zha, S., J. Rong, X. Guan, Y. Tang, Y. Han and G. Liu. 2019. Immunotoxicity of four nanoparticles to a marine bivalve species, Tegillarca granosa. J. Hazard
  80. Mater 377:237–48. https://doi.org/10.1016/j.jhazmat.2019.05.071
  81. Zannella, C., F. Mosca, F. Mariani, G. Franci, V. Folliero, M. Galdiero, P.G. Tiscar and M. Galdiero. 2017. Microbial diseases of bivalve mollusks: infections,
  82. immunology and antimicrobial defense. Mar. Drugs; 15(6):182. https://doi.org/10.3390/md15060182
  83. Zapata-Vívenes, E., L. Marcano y V. Acosta 2018. Respuestas inmunológicas, estabilidad lisosomal y frecuencia de micronúcleos en Eurythoe
  84. complanata (Polychaeta:Amphinomidae) expuestos a una fracción acuosa de lubricantes usados de motores de automóviles. Rev. Intern. Contam.
  85. Amb., 34 (2): 297-305. https://doi.org/10.20937/RICA.2018.34.02.10
  86. Zapata-Vívenes, E., O. Nusetti, L. Marcano, G. Sánchez and H. Guderley. 2020. Antioxidant defenses of flame scallop Ctenoides scaber (Born, 1778) exposed
  87. to the water-soluble fraction of used vehicle crankcase oils. Toxicol. Rep., 7:1597–1606. https://doi.org/10.1016/j.toxrep.2020.11.009
  88. Zapata Vívenes, E., G. Sánchez, O. Nusetti and L. Marcano. 2022. Modulation of innate immune responses in the flame scallop Ctenoides scaber (Born,
  89. caused by exposure to used automobile crankcase oils, Fish & Shellfish Immunology, 130: 342- 349. https://doi.org/10.1016/j.fsi.2022.09.020
  90. Zhao, C., L. Xiaoxu, L. Shibin and Y. Chang. 2011. Assessments of lysosomal membrane responses to stresses with neutral red retention assay and its potential
  91. application in the improvement of bivalve aquaculture. Afr, J. Biotechnol., 10 (64): 13968- 3973. https://doi.org/10.5897/AJB10.2283
  92. Zheng, F., F. Marques Gonçalves, Y. Abiko, H. Li, Y. Kumagai and M. Aschner. 2020. Redox toxicology of environmental chemicals causing oxidative stress.
  93. Redox Biol., 34: https://doi.org/10.1016/j.redox.2020.101475