Vol. 53 Núm. 1 (2024)
Articulos de investigación

Perfil nutricional de cepas de microalgas peruanas de los géneros Chaetoceros y Skeletonema de la costa central del Perú como ingrediente potencial para acuicultura

Hanna Hernández Acevedo
1Banco de Germoplasma de Organismos Acuáticos, AFIA-DGIA, Instituto del Mar del Perú
Leenin Flores Ramos
2Laboratorio de Análisis Instrumental, AFIA-DGIA, Instituto del Mar del Perú
Alberto Oscanoa Huaynate
Laboratorio de Análisis Instrumental, AFIA-DGIA, Instituto del Mar del Perú.
Anthony Ruiz Soto
Laboratorio de Análisis Instrumental, AFIA-DGIA, Instituto del Mar del Perú.
Carla Aguilar Samanamud
1Banco de Germoplasma de Organismos Acuáticos, AFIA-DGIA, Instituto del Mar del Perú

Publicado 2024-01-01

Palabras clave

  • diatomeas,
  • composición bioquímica,
  • cepas nativas,
  • proteínas,
  • lípidos

Cómo citar

1.
Hernández Acevedo H, Flores Ramos L, Oscanoa Huaynate A, Ruiz Soto A, Aguilar Samanamud CP. Perfil nutricional de cepas de microalgas peruanas de los géneros Chaetoceros y Skeletonema de la costa central del Perú como ingrediente potencial para acuicultura. Bol. Investig. Mar. Costeras [Internet]. 1 de enero de 2024 [citado 26 de diciembre de 2024];53(1):25-44. Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1250

Resumen

Las diatomeas marinas forman parte importante de la dieta de moluscos, crustáceos y peces debido a su perfil nutricional. El objetivo de esta investigación fue evaluar el perfil nutricional de ocho cepas de microalgas de los géneros Chaetoceros y Skeletonema, dominantes en la costa central del Perú, y valorar su potencial como ingrediente para acuicultura. Se realizaron cultivos de 7 L a
pH de 7.5-8.5, a 17 °C, iluminación de 35 μmol.s-1.m-2 y fotoperiodo 12:12 horas. Luego de 15 días de cultivo, se obtuvo la biomasa seca mediante liofilización y se realizaron los análisis de perfil nutricional. Los resultados indican valores de humedad de 5 a 14 %, cenizas
de 19 a 57 %, carbohidratos de 2 a 23 %, lípidos de 3 a 9 % y proteínas de 12 a 30 %. La cepa con mayor porcentaje de estos dos últimos compuestos fue la correspondiente a la especie S. costatum (IMP-BG-466). Así mismo, todas las cepas presentaron altos porcentajes relativos del ácido graso esencial, ácido eicopentaenoico (EPA), de 13 a 30 % y el aminoácido esencial leucina de 1 a 3 % (% p/p). Sin embargo, al presentar bajas concentraciones del ácido docosahexaenoico (DHA), arginina, histidina y lisina, es necesario complementar su utilización con otras fuentes para la formulación de dietas equilibradas

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Andersen, R. 2005. Algal Culturing Techniques. Phyco- logical Society of America, Elsevier Academic Press, New York, 578 p.
  2. Araújo, J., Candeias-Mendes, A., Monteiro, I., Teixeira, D., Soares, F. and Pousão-Ferreira, P. 2020. The use of diatom Skeletonema costatum on aquaculture-produced purple sea urchin (Paracentrotus lividus) larvae and post-larvae diet. Aquac Res., 51: 2545– 2554. https://doi.org/10.1111/are.14597.
  3. Arellana, C., Becerra, N., Jara, M., La Torre, M. I. y Yucra, H. 2006. Fitoplancton de la Playa Los Pescadores, Chorrillos, Lima, Perú, invierno 2005. Biologist (Lima), 4(2), 9-11. http://dx.doi.org/10.24039/rtb200642563.
  4. Baldisserotto, C., Sabia, A., Ferroni, L. and Pancaldi, S. 2019. Biological aspects and biotechnological potential of marine diatoms in relation to different light regimens. World J. Microbiol. Biotechnol., 1-9. https://doi.org/10.1007/s11274-019-2607-z.
  5. Banerjee, S., Ee-Hew, W., Khatoon, H., Shariff, M.andYusoff, F.M. 2011. Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. Afr. J. Biotechnol, 10: 1375–1383.
  6. Bastos, C.R.V., Maia, I.B, Pereira, H., Navalho, J. and Varela, J.C.S. 2022. Optimisation of biomass production and nutritional value of two marine diatoms (Bacillariophyceae), Skeletonema costatum and Chaetoceros calcitrans. Biology, 11: 594. https://doi.org/10.3390/biology11040594.
  7. Baylón, M., Advíncula, O., Loyola, O., Norabuena, A. y Hernández-Becerril, D. 2019. Variación espacial y temporal del fitoplancton con énfasis en las floraciones algales frente a La Playa de Pescadores Artesanales de Chorrillos, Lima, Perú. Ecol. Apl., 18 (2): 133-143. https://dx.doi.org/10.21704/rea.v18i2.1332.
  8. Becker, E.W. 2007. Micro-algae as a source of protein. Biotechnol. Adv., 25:207–210.
  9. Bellou S., Baeshen M., Elazzazy A.M., Aggeli D., Sayegh F. and Aggelis G. 2014. Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol. Adv., 32: 1476–1493.
  10. Bhattacharjya, R., Marella, T. K., Tiwari, A., Saxena, A., Singh, P. K. and Mishra, B. 2020. Bioprospecting of marine diatoms Thalassiosira, Skeletonema and Chaetoceros for lipids and other value-added products. Bioresour. Technol., 1-9. https://doi.org/10.1016/j.biortech.2020.124073.
  11. Bozart, A., Maier, U. G. and Zauner, S. 2009. Diatoms in biotechnology: modern tools and applications. Appl. Microbiol. Biotechnol., 82: 195-201. https://doi.org/10.1007/s00253-008-1804-8.
  12. Brown, M.R. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol., 145(1): 79-99.
  13. Brown, M. R. and Jeffrey, S. W. 1995. The amino acid and gross composition of marine diatoms potentially useful for mariculture. J. Appl. Phycol., 7: 521-27. https://doi.org/10.1007/BF00003938.
  14. Cohen, S. A. and Michaud, D. P. 1993. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal Biochem., 211(2):279-87. https://doi.org/10.1006/abio.1993.1270.
  15. Cordero-Esquivel, B., Voltolina, D. and Correa-Sandoval, F. 1993. The biochemical composition of two diatoms after different preservation techniques. Comp. Biochem. Physiol., 105B(2): 369-373.
  16. Cowey, C.B., 1979. Protein and amino acid requirements of finfish. In: Finfish nutrition and fishfeed technology, edited by J.E. Halver and K. Tiews. Proc. World Symp Hamburg, (14/15) Vol. 1:3–16.
  17. Cowey, C.B. and Luquet, P. 1983. Physiological basis of protein requirement of fishes. Critical analysis of allowances. In: Protein metabolism and nutrition, Vol.1, edited by M. Arnal, R. Pion and D. Bonin. INRA, Paris. 365–384 p.
  18. Cruz, N., Cruz, P. and Suárez, H. 2012. Characterization of the nutritional quality of the meat in some species of catfish: A review. Rev. Fac. Nal. Agr. Medellín., 65(2): 6799-6709.
  19. Deshmukh, S., Kumar, R. and Bala, K. 2019. Microalgae Biodiesel: A review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process. Technol., 191: 232–247.
  20. Díaz, A. H., Ramírez-Ayvar, A., Godínez-Siordia, D. y Gallo-García, C. 2006. Efecto del tamaño de las microalgas sobre la tasa de ingestión en larvas de Artemia franciscana (Kellog, 1906). Zootec. Trop., 24(2): 193-203.
  21. d’ Ippolito, G., Tucci, S., Cutignano, A., Romano, G., Cimino, G., Miralto, A. and Fontana, A. 2004. The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, 1686 (1-2): 100–107. https://doi.org/10.1016/j.bbalip.2004.09.002.
  22. d'Ippolito, G., Sardo, A., Paris, D., Vella, F. M., Adelfi, M. G., Botte, P., Gallo, C. and Fontana, A. 2015. Potential of lipid metabolism in marine diatoms for biofuel production. Biotechnol. Biofuels., 8: 28. https://doi.org/10.1186/s13068-015-0212-4.
  23. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 350-356.
  24. Faidutti, Paulo. 1992. Estado actual de la industria de alimentos balanceados para la acuicultura. Ponencia en el Primer Congreso Ecuatoriano de Acuicultura. Editor Jorge Calderón Velazquez.
  25. Flores Ramos, L., Ruiz Soto, A., Oscanoa Huaynate, A. I., y Cervantes Gallegos, M. A. 2020. Extracción e identificación de lípidos polares de las microalgas Nannochloropsis oceanica y Desmodesmus asymmetricus. Rev. Colomb. Quim., 49(2): 3–11.
  26. García, J.A., Núñez, F.A., Chacón, O., Alfaro, R.H. y Espinosa, M.R. 2004. Calidad de canal y carne de trucha arco iris, Oncorhynchus mykiss Richardson, producida en el noroeste del Estado de Chihuahua. Hidrobiológica,14(1):19-26.
  27. Gan, L., Zhou, L. L., Li and Yue, Y. R. 2016. Dietary leucine requirement of juvenile nile tilapia, Oreochromis niloticus. Aquac. Nutr., 22: 1040–1046. https://doi.org/10.1111/anu.12353.
  28. Gao, G., Wu, M., Fu, Q., Li, X. and Xu, J. A. 2019. Two-stage model with nitrogen and silicon limitation enhances lipid productivity and biodiesel features of the marine Bloom-forming siatom Skeletonema costatum. Bioresour. Technol., 289: 121717.
  29. Granum, E., Kirkvold, S. and Myklestad, S. 2002. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: Diel variations and effects of N depletion. Marine Ecology-progress Series - MAR ECOL-PROGR SER., 242: 83-94.
  30. Gouveia, L., Batista, A.P., Sousa, I., Raymundo, A. and Bandarra, N.M. 2008. Microalgae in novel food products. In: Food Chemistry Research Developments; Papadopoulos, K.N., Ed.; Nova Science Publishers: Hauppauge, NY, USA: 2–37 p. ISBN 978-1-60456-262-().
  31. Guihéneuf, F., Mimouni, V., Ulmann, L. and Tremblin, G. 2008. Environmental factors affecting growth and omega 3 fatty acid composition in Skeletonema costatum. The influences of irradiance and carbon source. Diatom Res., 23: 93–103.
  32. Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith W.L. and Chanley M.H (Eds.) Culture of Marine Invertebrate Animals. Plenum Press, New York, USA, 26- 60 p.
  33. Guillaume, S., Margaret, Q. and Dominique, B. A 2017. Meta-Analysis of Essential Amino Acid Requirements of Fish. Avances En Nutrición Acuícola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/19.
  34. Hernández, A. y Labbé, J. 2014. Microalgas, cultivos y beneficios. Rev. Biol. Mar. Oceanogr, 49 (2): 157-173. http://dx.doi.org/10.4067/S0718-19572014000200001.
  35. Hernández-Acevedo, H., Flores-Ramos, L. y Ruiz-Soto, A. 2019. Ácidos grasos en cepas de microalgas del Banco de Germoplasma de Organismos Acuáticos del Instituto del Mar del Perú (IMARPE). Rev. peru. Biol., 26(3): 369-78. http://dx.doi.org/10.15381/ rpb.v26i3.
  36. Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M. and Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J., 54: 621–639.
  37. Ichihara, K., Fukubayashi, Y. 2010. Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res. Mar, 51(3): 635-40. http://dx.doi.org/10.1194/jlr.D001065. Epub 2009 Sep 16. PMID: 19759389; PMCID: PMC2817593.
  38. IMARPE, I. d. 2020. Manual para la producción de biomasa microalgal en condiciones de invernadero. Callao, Lima: Inf. Inst. Mar. Perú.
  39. Izquierdo, M. 2005. Essential fatty acid requirements in mediterranean fish species. Cah. Cahiers Options Méditerranéennes, 63: 91-102. 63.
  40. Izquierdo, M. S., Fernandez-Palacios, H., and Tacon A. G. J. 2001. Effect of broodstock nutrition on reproductive performance of fish. Aquacult., 197: 25-42.
  41. Jallet, D., Cabaellero, M.A., Gallina, A.A., Youngblood, M. and Peers, G. P. 2016. Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime. Algal Res., 18: 51-60.
  42. Jaya-Ram, A., Kuah, M., Lim, P., Kolkovski, S. and Shu-Chien, A. 2008. Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNA expression in female zebrafish Danio rerio. Aquacult., 277: 275-281.
  43. Jiang, X., Han, Q., Gao and X., Gao, G. 2016. Conditions optimising on the yield of biomass, total lipid, and valuable fatty acids in two strains of Skeletonema menzelii. Food Chem., 194: 723–732. http://dx.doi.org/10.1016/j.foodchem.2015.08.073.
  44. Jin, M., Monroig, Ó., Lu, Y., Yuan, Y., Li, Y., Ding, L., Tocher, D. R. and Zhou, Q. 2017. Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii). PloS one., 12(4): e0176216. https://doi.org/10.1371/journal.pone.0176216.
  45. Ju, Z., Forster, I., Conquest, L. and Dominy, W. 2008. Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquac Nutr., 14 (6): 533–543. https://doi.org/10.1111/j.1365-2095.2007.00559.x.
  46. Kanazawa, A. 1983. Effects of dietary phospholipids on growth of the larval red sea bream and knife jaw. Mem.Fac.Fish., Kagoshima Univ., 32: 109–114.
  47. Kim, J. D., Lall, S. 2000. Amino acid composition of whole body tissue of Atlantic halibut (Hippoglossus hippoglossus), yellowtail flounder (Pleuronectes ferruginea) and Japanese flounder (Paralichthys olivaceus). Aquac., 187: 367-373. http://dx.doi.org/10.1016/S0044-8486(00)00322-7.
  48. Koven, W., Barr, Y., Lutzky, S., Ben-Atia, I., Wiss, R., Harel, M., Behrens, P. and Tandler, A. 2001. The effect of dietary arachidonic acid (20:4n-6) on growth, survival and resistance to handling stress in gilthead seabream (Sparus aurata) larvae. Aquac., 193: 107-122. http://dx.doi.org/10.1016/S0044-8486(00)00479-8.
  49. Kolar, K. 1992. Gravimetric Determination of moisture and ash in meat and meat products: NMKL Interlaboratory Study. J. AOAC Int., 1016-1022.
  50. Kpogue, D., Gangbazo, H. and Fiogbe, E. 2013. A preliminary study on the dietary protein requirement of Parachanna obscura (Günther, 1861) larvae. Turkish J. Fish. Aquat. Sci., 13: 111-117. http://dx.doi.org/10.4194/1303-2712-v13_1_14.
  51. Leger, C., Gatesoupe, F.J., Metailler, R., Luquet, P. and Fremont, L. 1979. Effect of dietary fatty acids differing by chain lengths and omega-series on the growth and lipid composition of turbot Scophthalmus maximus. Comp.Biochem.Physiol., B64: 345–350.
  52. Lestari, D., Ekawati, A. and Maftuch, M. 2014. Dried Skeletonema costatum in feed formulation for the growth of vaname shrimp (Litopenaeus vannamei). J. Exp. Life Sci., 4: 45-49. http://dx.doi.org/10.21776/ub.jels.2014.004.02.04.
  53. Lowry, O. H., Rosbrough, N. J., Farr, A. and Randall, R. J. 1951. Protein measurement with the folin Phenol Reagent. J. Biol. Chem., 193: 256-275. http://dx.doi.org/10.1016/S0021-9258(19)52451-6.
  54. Maeda, H. 2015. Nutraceutical effects of fucoxanthin for obesity and diabetes therapy; a review. J. Oleo Sci., 64: 125-132. http://dx.doi.org/10.5650/jos.ess14226.
  55. Mangas-Sanchez, J. and Adlercreutz, P. 2015. Highly efficient enzymatic biodiesel production promoted by particle-induced emulsification. Biotechnol. Biofuels., 8: 58. http://dx.doi.org/10.1186/s13068-015-0247-6.
  56. Martínez-Fernández E., Acosta-Salmón H. and Southgate P. 2006. The nutritional value of seven species of tropical microalgae for black-lip pearl oyster (Pinctada margaritifera, L.) larvae. Aquac., 257: 491-503.https://doi.org/10.1016/j.aquaculture.2006.03.022
  57. Matsumoto, M., Mojima, D., Nonoyama, T., Ikeda, K., Maeda, Y., Yoshino, T. and Tanaka, T. 2017. Outdoor cultivation of marine diatoms for year-round production of biofuels. Mar. Drugs., 15(4): 94. https://doi.org/10.3390/md15040094.
  58. Medina-Reyna, C. y Cordero-Esquivel, B. 1998. Crecimiento y composición bioquímica de la diatomea Chaetoceros muelleri Lemmerman, mantenida en cultivo estático con un medio comercial. Ciencia y Mar., II (6): 19-25. (ID: 5868)
  59. Moreno-Álvarez, M. J., Hernández, J. G., Rovero, R., Tablante, A. y Rangel, L. 2000. Alimentación de tilapia con raciones parciales de cáscara de naranja. Ciencia y Tecnología Alimentaria., 3(1): 29-33.
  60. Myklestad, S. and Haug, A. 1972. Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I. Effect of the concentration of nutrients in the culture medium. J. Exp. Mar. Biol. Ecol., 9:125-136.
  61. Nevejan, N., Courtens, V., Hauva, M., Gajardo,G. and Sorgeloos, P. 2003. Effect of lipid emulsions on production and fatty acid composition of eggs of the scallop Argopecten purpuratus. Mar. Biol., 143: 327–338. https://doi.org/10.1007/s00227-003-1076-x.
  62. NRC (National Research Council). 2011. Nutrient requirements of fish and shrimp. Washington (USA): The National Academies Press, 228.
  63. Ochoa, N. y Tarazona, J. 2003. Variabiliad temporal de pequeña escala en el fitoplancton de la Bahía Independencia, Piso Perú. Rev. Peru. Biol., 10: 59-66. ISSN 1727-9933.
  64. Okaichi, T. 1974. Significance of amino acid composition of phytoplankton and suspensoid in marine biological production. Nippon Suisan Gakkaishi., 40 (5): 471–478. https://doi.org/10.2331/suisan.40.471.
  65. Orozco, R., Quispe, A., Lorenzo, A. y Zamudio, M. 2017. Asociación de floraciones de algas nocivas de Vibrio spp. en áreas de pesca y acuicultura de bivalvos de moluscos en las bahías de Sechura y Pisco, Perú. Rev. peru. biol., 24 (1), 111-16. http://dx.doi.org/10.15381/rpb.v24i1.13111.
  66. Oser, B.L. 1959. An integrated essential amino acid index for predicting the biological value of proteins. In: Albanese AA (ed) Protein and Amino Acid Nutrition. Academic Press, Amsterdam, 281–295 p.
  67. Pacheco-Vega, J.M. and Sánchez-Saavedra, M.D.P. 2009. The biochemical composition of Chaetoceros muelleri (Lemmermann Grown) with an agricultural fertilizer. JWAS, 40: 556-560. https://doi.org/10.1111/j.1749-7345.2009.00276.x.
  68. Paasche, E. 1973. Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species. Mar. Biol., 19: 262-269.
  69. Pascual, F.P. 1984. Lecithin requirement of Penaeus monodon juveniles. Poster No.46; First International Conference on the Culture of Penaeid Prawns/Shrimps, December 4–7, Iloilo, Philippines.
  70. Parsons, T. R., Takahashi, M., and Hargrave, B. 1984. Biological Oceanographic Processes. 3a. Ed. Pergmon Press Ltd. Oxford, England, 330 pp.
  71. Peltomaa, E., Hällfors, H. and Taipale, S. J. 2019. Comparison of diatoms and dinoflagellates from different habitats as sources of PUFAs. Marine drugs, 17(4): 233. https://doi.org/10.3390/md17040233.
  72. Peñaflorida, V. D. 1989. An evaluation of indigenous protein sources as potential component in the diet formulation for tiger prawn, Penaeus monodon, using essential amino acid index (EAAI). Aquaculture, 83 (3-4): 319–330. https://doi.org/10.1016/0044-8486(89)90043-4.
  73. Pineda-Quiroga, C. 2010. Determinación del requerimiento de lisina en la dieta de alevinos de cachama blanca Piaractus brachypomus y su efecto en el desempeño productivo. Retrieved from https://ciencia.lasalle.edu.co/zootecnia/450.
  74. Pratiwy, F. M. and Pratiwi, D.Y. 2020. The potentiality of microalgae as a source of DHA and EPA for Aquaculture Feed: A Review. Int. J. Fish. Aquat. Stud, 8: 39–41.
  75. Qi-Cun, Z., Yong-Li, W., Hua-Lang, W. and Bei-Ping,T. 2013. Dietary threonine requierements of juveniles Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 392–395: 142–147. http://dx.doi.org/10.1016/j.aquaculture.2013.01.026.
  76. Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 102(1): 100–112.
  77. Sánchez-Saavedra, M.P. and Voltolina, D. 1994. The chemical composition of Chaetoceros sp. (Baciollariophyceae) under different light conditions. Comp. Biochem Physiol. Vol. 107B, No 1: 39-44 p.
  78. Santigosa, E.; Brambilla, F. and Milanese, L. 2021. Microalgae Oil as an Effective Alternative Source of EPA and DHA for Gilthead Seabream (Sparus aurata) Aquaculture. Anim., 11: 971. https://doi.org/ 10.3390/ani11040971.
  79. Satoh, S., Izumc, K. and Takucbi, T.1987. Availability to rainbow trout (Onchorhynchus masou) of zinc contained in various types of fish meals. Niooon Suisan Cakkaishi, 53: 1861-1866. ISSN : 0021-5392
  80. Seiliez, I., Panserat, S., Corraze, G., Kaushik, S. and Bergot, P. 2003. Cloning and nutritional regulation of a 6-desaturase-like enzyme in the marine teleost gilthead seabream (Sparus aurata). Comp Biochem Physiol., 135: 449-460.
  81. Schmid, A. M. M., Borowitzka, M.A. and Volcani, B.E. 1981. Morphogenesis and biochemistry of diatom cell walls. In Cytomorphogenesis in Plants; Kiermayer, O., Ed.; Springer: Berlin/Heidelberg, Germany, 63–97 p.
  82. Shearer, K., Maage, A., Opstvedt, J. and Mundheim, H. 1992. Effects of high-ash diets on growth, feed efficiency, and zinc status of juvenile Atlantic salmon (Salmo salar), Aquaculture, 106 (3–4):345-355. ISSN 0044-8486. https://doi.org/10.1016/0044-8486(92)90266-N.
  83. Simpson, T.L. and Volcani, B.E. 1981. Genesis and biochemistry. En Simpson TL, Volcani BE (Eds.) Silicon and siliceous structures in biological systems. Springer. Nueva York, EEUU, 157-201 p.
  84. Stonik, V. and Stonik, I. 2015. Low-molecular-weight metabolites from diatoms: structures, biological roles and biosynthesis. Mar. Drugs, 13: 3672–3709. https://doi.org/10.3390/md13063672.
  85. Storseth, T.R., Hansen, K., Reitan, K.I. and Skjermo, J. 2005. Structural characterization of β-D (1→3)-glucans from different growth phases of the marine diatoms Chaetoceros mulleri and Thalassiosira weissflogii. Carbohyd. Res., 340: 1159–64.
  86. Suroy, M., Panagiotopoulos, C., Boutorh, J., Goutx, M. and Moriceau, B. 2015. Degradation of diatom carbohydrates: A case study with N- and Si-stressed Thalassiosira weissflogii. J. Exp. Mar. Biol. Ecol. Elsevier, 470: 1-11. https://doi.org/ff10.1016/j.jembe.2015.04.018ff. ffhal-03622281.
  87. Suk-Lim, A., Jin-Jeong, H., So-Jin, K. and Jin-Hee, O. K. 2018. Amino acids profiles of six dinoflagellate species belonging to diverse families: possible use as animal feeds in aquaculture. Algae,33(3): 279-290. https://doi.org/10.4490/algae.2018.33.9.10.
  88. Tacon, A.G.J. 1987. The nutrition and feeding of farmed fish and shrimp - A training manual. 1. The essential nutrients. Brasilia: FAO, 117 p. (FAO Field document).
  89. Tibaldi, E. and Kaushik S. J. 2005. Amino acid requirements of mediterranean fish species. In: Montero D. (ed.), Basurco B. (ed.), Nengas I. (ed.), Alexis M. (ed.), Izquierdo M. (ed.). Mediterranean fish nutrition. Zaragoza : CIHEAM, 59-65 (Cahiers Options Méditerranéennes; n. 63).
  90. Turchini, G. M., Ng W. K. and Tocher D. R. 2011. Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press Boca Raton, 533.
  91. Tzovenis I., De Pauw N. and Sorgeloos P. 2003. Optimisation of T-ISO biomass-production rich in essential fatty acids. I: effect of different light regimes on the production of biomass. Aquaculture, 216: 203–222
  92. Van Houcke, J., Medina, I., Maehre, H.K., Cornet, J., Cardinal, M., Linssen, J. and Luten, J. 2017. The effect of algae diets Skeletonema costatum and Rhodomonas baltica on the biochemical composition and sensory characteristics of Pacific cupped oysters Crassostrea gigas during land-based refinement. Food Res. Int., 100: 151–160.
  93. Vásquez-Suárez, A., Guevara, M., González, M., Lemus, N. y Arredondo-Vega, B. 2010. Crecimiento y composición bioquímica de Skeletonema costatum (Greville, 1866) Cleve, 1979 (Heterokontophyta-Bacillariophyceae) en función de la irradiancia y del medio e cultivo. SABER. Revista Multidisciplinaria del Consejo de Investigación de la Universidad de Oriente, 22(2): 149-59. ISSN: 1315-0162. https://www.redalyc.org/articulo.oa?id=427739444006.
  94. Velasco, L. A., Carrera, S. and Barros, J. 2016. Isolation, culture and evaluation of Chaetoceros muelleri from the Caribbean as food for the native scallops, Argopecten nucleus and Nodipecten nodosus. Lat. Am. J. Aquat. Res., 44(3): 557-568. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718560X2016000300014&lng=es&tlng=en.
  95. Welladsen, H., Kent, M., Mangott, A. and Li, Y. 2014. Shelf-life assessment of microalgae concentrates: Effect of cold preservation on microalgal nutrition profiles. Aquaculture, 430: 241-24.
  96. Xie F, Zeng W, Zhou Q., Wang, H., Wang, T., Zheng, C. and Wang, Y. 2012. Dietary lysine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquacultur, 358-359: 116–121. https://doi.org/10.1016/j.aquaculture.2012.06.027
  97. Yan, L., Qinghui, A., Kangsen, M., Wei, X., Zhenyan, C., and Zhigang, H. E. 2010.Dietary leucine requirement for juvenile large yellow croaker Pseudosciaena crocea (Richardson, 1846). J. Ocean Univ. China., 9: 371-375. https://doi.org/10.1007/s11802-010-1770-5.
  98. Yepes-Blandón, J. A. and Botero-Aguirre, M. 2018. Ácidos grasos poliinsaturados en la reproducción de peces: algunos Aspectos fisiológicos y endocrinológicos. ORINOQUIA, 22(1): 68-79. https://doi.org/10.22579/20112629.483.
  99. Yi, Z., Xu, M., Di, X., Brynjolfsson, S. and Fu, W. 2017. Exploring valuable lipids in diatoms. Front. Mar. Sci., 4: 17. https://doi.org/10.3389/fmars.2017.00017.
  100. Zafra-Trelles, A. M., Díaz-Barboza, M. E., Dávila-Gil, F. A., Bopp-Vidal, G. M., Vela-Alva, K. A., López-Espinoza, M. B., et al. 2017. Cultivo de microalgas marinas potenciales para la acuicultura del litoral entre Puerto Salaverry y Puerto Chicama, La Libertad, Perú. Arnaldoa, 24(2): 567-82. https://dx.doi.org/http://doi.org/10.22497/arnaldoa.242.24209.
  101. Zhang, T., Chi, Z. and Sheng, J. 2009. A highly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a potentially useful for single-cell protein production and its nutritive components. Mar Biotechnol., 11: 280–286. https ://doi.org/10.1007/s1012 6-008-9144-3.