Vol. 53 Núm. 1 (2024)
Notas científicas

Evaluación de las técnicas para la digestión y extracción de microplásticos ingeridos por el zooplancton marino

Maria Isabel Criales Hernandez
Universidad Nacional de Colombia

Publicado 2024-01-01

Palabras clave

  • Protocolos de extracción Microplasticos,
  • zooplancton,
  • , contaminación marina,
  • Caribe colombiano

Cómo citar

1.
Criales Hernandez MI, Coral Chamarro LS, Cabanzo-Hernández R. Evaluación de las técnicas para la digestión y extracción de microplásticos ingeridos por el zooplancton marino. Bol. Investig. Mar. Costeras [Internet]. 1 de enero de 2024 [citado 4 de abril de 2025];53(1):175-86. Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1277

Resumen

Existe un incremento de publicaciones por conocer la problemática de la contaminación marina por microplásticos (MPs), donde ya se reconocen algunos de los efectos que pueden tener en el zooplancton. Este aumento de publicaciones requiere que se revisen las
metodologías para unificar criterios de comparación, por lo que es de gran importancia unificar técnicas para las metodologías de extracción de los microplásticos ingeridos por el zooplancton para determinar la abundancia y las características de los MPs. A partir de una búsqueda en
bases de datos, se escogieron cuatro técnicas específicas para la degradación de la materia orgánica representada por el zooplancton. Las técnicas
fueron evaluadas en cuatro aspectos: 1) Eficiencia de la degradación de la materia orgánica, 2) Duración y condiciones de temperatura para el
procesamiento, 3) Efecto físico de la digestión sobre los microplásticos, 4) cuantificar los MPs a partir de la tasa de ingestión. Se emplearon cincuenta individuos para cada uno de los grupos más abundantes correspondientes a las familias Paracalanidae, Corycaeidae y Oncaeidae, y al filo Chaetognatha. Los resultados obtenidos mostraron que la mejor técnica fue la de Md Amin et al (2020) con modificaciones, en la que no se observaron alteraciones en la integridad de los MPs y la tasa de ingestión fue similar a la que se reporta para estos organismos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Acosta-Coley, I., Duran-Izquierdo, M., Rodriguez-Cavallo, E., Mercado-Camargo, J., Mendez-Cuadro, D., and Olivero-Verbel, J. (2019). Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans. Marine Pollution Bulletin, 146(June), 574–583. https://doi.org/10.1016/j.marpolbul.2019.06.084
  2. Avio, C. G., Gorbi, S., and Regoli, F. (2015). Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea. Marine Environmental Research, 111, 18–26. https://doi.org/10.1016/j.marenvres.2015.06.014
  3. Aytan, U., Esensoy, F. B., and Senturk, Y. (2022). Microplastic ingestion and egestion by copepods in the Black Sea. Science of the Total Environment, 806. https://doi.org/10.1016/j.scitotenv.2021.150921
  4. Botterell, Z. L. R., Beaumont, N., Dorrington, T., Steinke, M., Thompson, R. C., and Lindeque, P. K. (2019). Bioavailability and effects of microplastics on marine zooplankton: A review. In Environmental Pollution (Vol. 245, pp. 98–110). Elsevier Ltd. https://doi.org/10.1016/j.envpol.2018.10.065
  5. Calderon, E. A., Hansen, P., Rodríguez, A., Blettler, M. C. M., Syberg, K., and Khan, F. R. (2019). Microplastics in the Digestive Tracts of Four Fish Species from the Ciénaga Grande de Santa Marta Estuary in Colombia. Water, Air, and Soil Pollution, 230(11). https://doi.org/10.1007/s11270-019-4313-8
  6. Cau, A., Avio, C. G., Dessì, C., Follesa, M. C., Moccia, D., Regoli, F., and Pusceddu, A. (2019). Microplastics in the crustaceans Nephrops norvegicus and Aristeus antennatus: Flagship species for deep-sea environments? Environmental Pollution, 255, 113107. https://doi.org/10.1016/j.envpol.2019.113107
  7. Chenillat, F., Huck, T., Maes, C., Grima, N., and Blanke, B. (2021). Fate of floating plastic debris released along the coasts in a global ocean model. Marine Pollution Bulletin, 165(February), 112116. https://doi.org/10.1016/j.marpolbul.2021.112116
  8. Cole, M., Lindeque, P., Fileman, E., Halsband, C., and Galloway, T. S. (2015). The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental Science and Technology, 49(2), 1130–1137. https://doi.org/10.1021/es504525u
  9. Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., and Galloway, T. S. (2013). Microplastic ingestion by zooplankton. Environmental Science and Technology, 47(12), 6646–6655. https://doi.org/10.1021/es400663f
  10. Cole, M., Webb, H., Lindeque, P. K., Fileman, E. S., Halsband, C., and Galloway, T. S. (2014). Isolation of microplastics in biota-rich seawater samples and marine organisms. Scientific Reports, 4. https://doi.org/10.1038/srep04528
  11. de Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., and Futter, M. N. (2018). Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of the Total Environment, 645, 1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207
  12. Desforges, J. P. W., Galbraith, M., and Ross, P. S. (2015). Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Archives of Environmental Contamination and Toxicology, 69(3). https://doi.org/10.1007/s00244-015-0172-5
  13. Frias, J. P. G. L., and Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138, 145–147. https://doi.org/10.1016/j.marpolbul.2018.11.022
  14. Gago, J., Carretero, O., Filgueiras, A. V., and Viñas, L. (2018). Synthetic microfibers in the marine environment: A review on their occurrence in seawater and sediments. In Marine Pollution Bulletin (Vol. 127, pp. 365–376). Elsevier Ltd. https://doi.org/10.1016/j.marpolbul.2017.11.070
  15. Garcés-Ordóñez, O., Espinosa, L. F., Costa Muniz, M., Salles Pereira, L. B., and Meigikos dos Anjos, R. (2021). Abundance, distribution, and characteristics of microplastics in coastal surface waters of the Colombian Caribbean and Pacific. Environmental Science and Pollution Research, 28(32), 43431–43442. https://doi.org/10.1007/s11356-021-13723-x
  16. He, S., Jia, M., Xiang, Y., Song, B., Xiong, W., Cao, J., Peng, H., Yang, Y., Wang, W., Yang, Z., and Zeng, G. (2022). Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. Journal of Hazardous Materials, 424. https://doi.org/10.1016/j.jhazmat.2021.127286
  17. Jeong, C. B., Kang, H. M., Lee, M. C., Kim, D. H., Han, J., Hwang, D. S., Souissi, S., Lee, S. J., Shin, K. H., Park, H. G., and Lee, J. S. (2017). Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Scientific Reports, 7. https://doi.org/10.1038/srep41323
  18. Jimenez-Cárdenas, V., Luna-Acosta, A., and Gómez-Méndez, L. D. (2022). Differential Presence of Microplastics and Mesoplastics in Coral Reef and Mangrove Fishes in Isla Grande, Colombia. Microplastics, 1(3), 477–493. https://doi.org/10.3390/microplastics1030034
  19. José, S., and Jordao, L. (2022). Exploring the Interaction between Microplastics, Polycyclic Aromatic Hydrocarbons and Biofilms in Freshwater. Polycyclic Aromatic Compounds, 42(5), 2210–2221. https://doi.org/10.1080/10406638.2020.1830809
  20. Kovač Viršek, M., Palatinus, A., Koren, Š., Peterlin, M., Horvat, P., and Kržan, A. (2016). Protocol for Microplastics Sampling on the Sea Surface and Sample Analysis. Journal of Visualized Experiments : JoVE, 118. https://doi.org/10.3791/55161
  21. Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., and Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22939-w
  22. Lee, K. W., Shim, W. J., Kwon, O. Y., and Kang, J. H. (2013). Size-dependent effects of micro polystyrene particles in the marine copepod tigriopus japonicus. Environmental Science and Technology, 47(19), 11278–11283. https://doi.org/10.1021/es401932b
  23. Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., Li, D., and Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environmental Pollution, 214, 177–184. https://doi.org/10.1016/j.envpol.2016.04.012
  24. Lo, H. K. A., and Chan, K. Y. K. (2018). Negative effects of microplastic exposure on growth and development of Crepidula onyx. Environmental Pollution, 233, 588–595. https://doi.org/10.1016/j.envpol.2017.10.095
  25. Md Amin, R., Sohaimi, E. S., Anuar, S. T., and Bachok, Z. (2020). Microplastic ingestion by zooplankton in Terengganu coastal waters, southern South China Sea. Marine Pollution Bulletin, 150. https://doi.org/10.1016/j.marpolbul.2019.110616
  26. Osborn, A. M., and Stojkovic, S. (2014). Marine microbes in the Plastic Age. Microbiology Australia, 35(4), 207. https://doi.org/10.1071/ma14066
  27. Smith, P. E., y Richardson, S. L. (1979). Técnicas modelo para prospecciones de huevos y larvas de peces pelágicos. FAO.
  28. Souza, C. P., Almeida, B. C., Colwell, R. R., and Rivera, I. N. G. (2011). The Importance of Chitin in the Marine Environment. In Marine Biotechnology (Vol. 13, Issue 5, pp. 823–830). https://doi.org/10.1007/s10126-011-9388-1
  29. Steinberg, D. K., and Landry, M. R. (2017). Zooplankton and the Ocean Carbon Cycle. Annual Review of Marine Science, 9(1), 413–444. https://doi.org/10.1146/annurev-marine-010814-015924
  30. Turner, A., and Holmes, L. A. (2015). Adsorption of trace metals by microplastic pellets in fresh water. Environmental Chemistry, 12(5), 600. doi:10.1071/en14143
  31. Vroom, R. J. E., Koelmans, A. A., Besseling, E., and Halsband, C. (2017). Aging of microplastics promotes their ingestion by marine zooplankton. Environmental Pollution, 231, 987–996. https://doi.org/10.1016/j.envpol.2017.08.088
  32. Yin, J., Li, J. Y., Craig, N. J., and Su, L. (2022). Microplastic pollution in wild populations of decapod crustaceans: A review. Chemosphere, 291(P2), 132985. https://doi.org/10.1016/j.chemosphere.2021.132985
  33. Zheng, S., Zhao, Y., Liangwei, W., Liang, J., Liu, T., Zhu, M., Li, Q., and Sun, X. (2020). Characteristics of microplastics ingested by zooplankton from the Bohai Sea, China. Science of the Total Environment, 713. https://doi.org/10.1016/j.scitotenv.2019.136357
  34. Zitouni, N., Bousserrhine, N., Missawi, O., Boughattas, I., Chèvre, N., Santos, R., Belbekhouche, S., Alphonse, V., Tisserand, F., Balmassiere, L., Dos Santos, S. P., Mokni, M., Guerbej, H., and Banni, M. (2021). Uptake, tissue distribution and toxicological effects of environmental microplastics in early juvenile fish Dicentrarchus labrax. Journal of Hazardous Materials, 403. https://doi.org/10.1016/j.jhazmat.2020.124055