Estimación de tallas de anchoveta (Engraulis ringens) mediante ecosonda en áreas pesqueras de difícil acceso en la Región de Atacama, Chile

Publicado 2025-07-01
Palabras clave
- Pelágico,
- anchoveta,
- pesquerías,
- monitoreo,
- ecosonda
Cómo citar
Derechos de autor 2025 Luis Angel La Cruz Aparco, Cristián Henríquez-Pastene, Adrian Ibieta, Francisco Leiva-Dietz

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Resumen
Este estudio explora el uso de métodos hidroacústicos para estimar la distribución de las longitudes de anchovetas, ofreciendo una alternativa a los métodos tradicionales de muestreo biológico. Se recolectaron datos acústicos utilizando dos algoritmos: Single Target y Tracked Target, junto con un modelo de conversión de TS a longitud específico para anchoveta. Los resultados mostraron que el algoritmo Single Target estimó tamaños de 8,5 a 16 cm, con una moda de 12,0 cm, mientras que el algoritmo Tracked Target identificó un rango de 9 a 14 cm, con una moda de 11,5 cm. Las anchovetas juveniles representaron el 45,8% y el 51,2% de la población en cada algoritmo. Además, la profundidad de los ecos osciló entre 3,92 y 43,95 m, lo que sugiere que las anchovetas de mayor longitud tienden a habitar zonas costeras más profundas, posiblemente como una adaptación fisiológica a estos ambientes. El estudio demuestra la efectividad de la hidroacústica para estimar las tallas de peces, especialmente en áreas donde el muestreo tradicional es inaccesible o difícil de llevar a cabo. Este enfoque contribuye a comprender la dinámica de las poblaciones de peces y abre la puerta a futuros
estudios.
Descargas
Citas
- Alheit, J. and Niquen, M. (2004). Regime shifts in the Humboldt Current ecosystem. Progress in Oceanography, 60(2-4), pp.201–222. https://doi.org/10.1016/j.pocean.2004.02.006
- Báez, J.C., Gimeno, L. and Real, R. (2021). North Atlantic Os- cillation and Fisheries Management during Global Climate Change. Reviews in Fish Biology and Fisheries, 31, pp. 319–336. https://doi.org/10.1007/s11160-021-09645-z
- Balk, H. and Lindem, T. (2000). Amélioration des détections de poissons à partir des données de sonar à double faisceau. Aquatic Living Resources, 13(5), pp. 297–303. https://doi. org/10.1016/s0990-7440(00)01079-2
- Bassett, C., De Robertis, A. and Wilson, C.D. (2018). Broad- band echosounder measurements of the frequency re- sponse of fishes and euphausiids in the Gulf of Alaska. ICES Journal of Marine Science, 75(3), pp. 1131–1142. https://doi.org/10.1093/icesjms/fsx204
- Benoit‐Bird, K.J. and Waluk, C.M. (2020). Exploring the prom- ise of broadband fisheries echosounders for species dis- crimination with quantitative assessment of data process- ing effects. Journal of the Acoustical Society of America, 147(1), pp. 411–427. https://doi.org/10.1121/10.0000594
- Bertrand, A., Gerlotto, F., Bertrand, S., Gutiérrez, M., Alza, L., Chipollini, A., Díaz, E., Espinoza, P., Ledesma, J., Ques- quén, R., Peraltilla, S. and Chavez, F. (2008). Schooling behaviour and environmental forcing in relation to an- choveta distribution: An analysis across multiple spatial scales. Progress in Oceanography, 79(2), pp. 264–277. https://doi.org/10.1016/j.pocean.2008.10.018
- Bertrand, A., Segura, M., Gutierrez, M. and Vasquez, L. (2004). From small-scale habitat loopholes to decadal cycles: a habitat-based hypothesis explaining fluctua- tion in pelagic fish populations off Peru. Fish and Fisher- ies, 5(4), pp. 296–316. https://doi.org/10.1111/j.1467- 2679.2004.00165.x
- Boswell, K.M., Wilson, M.P. and Wilson, C.A. (2007). Hy- droacoustics as a tool for assessing fish biomass and size distribution associated with discrete shallow water estua- rine habitats in Louisiana. Estuaries and Coasts, 30(4), pp. 607–617. https://doi.org/10.1007/BF02841958
- Canales, C.M., Adasme, N.A., Cubillos, L.A., Cuevas, M.J. and Nazareth Sánchez (2018). Long-time spatio-temporal vari- ations in anchovy (Engraulis ringens) biological traits off northern Chile: an adaptive response to long-term environ- mental change? ICES Journal of Marine Science, 75(6), pp.1908–1923. https://doi.org/10.1093/icesjms/fsy082
- Castillo, J., Saavedra, A., Leiva, F., Legua, J., La Cruz, L., Alegría, N., Núñez, S., Silva, J. and Sepulveda, A. (2022). Estimación de la fuerza de blanco (TS) para las unidades demográficas de anchoveta a nivel nacional 2020-2019. Chile: Instituto de Fomento Pesquero, p.170.
- Castillo, P.R., Ñiquen, M., Cruz, L.L., Guevara-Carrasco, R. and Cuadros, G. (2021). Migration behavior of anchoveta (Engraulis ringens) in the Northern Humboldt Current Sys- tem between September 2019 and September 2020. Latin American Journal of Aquatic Research, 49(5), pp.702–716. http://dx.doi.org/10.3856/vol49-issue5-fulltext-2669
- Chavez, F.P. and Messié, M. (2009). A comparison of Eastern Boundary Upwelling Ecosystems. Progress in Ocean- ography, 83(1-4), pp.80–96. https://doi.org/10.1016/j. pocean.2009.07.032
- Chu, D. (2011). Technology evolution and advances in fisher- ies acoustics. Journal of Marine Science and Technology, 19(3). https://doi.org/10.51400/2709-6998.2188
- De Robertis, A. and Higginbottom, I. (2007). A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES Journal of Marine Science, 64(6), pp.1282–1291. https://doi.org/10.1093/ icesjms/fsm112
- Demer, D.A., Berger, L., Bernasconi, M., Bethke, E., Bo- swell, K., Chu, D., Domokos, R., Dunford, A., Fassler, S., Gauthier, S., Hufnagle, L.T., Jech, J.M., Bouffant, N., Lebourges-Dhaussy, A., Lurton, X., Macaulay, G.J., Perrot, Y., Ryan, T., Parker-Stetter, S. and Stienessen, S. (2015). Calibration of acoustic instruments. International Council for the Exploration of the Sea (ICES) Copenhagen, Denmar, Copenhagen, Denmar: International Council for the Exploration of the Sea (ICES) C, p.133. http://dx.doi. org/10.25607/OBP-185
- Doray, M., Berger, L., Le Bouffant, N., Yves Coail, J., Vacherot, J.-P., De La Bernardie, X., Morinière, P., Lys, E., Schwab,R. and Petitgas, P. (2016). A method for controlled target strength measurements of pelagic fish, with application to European anchovy (Engraulis encrasicolus). Ices Journal of Marine Science, 73(8), pp.1987–1997. https://doi. org/10.1093/icesjms/fsw084
- Foote, K.G. (1987). Fish target strengths for use in echo integrator surveys. The Journal of the Acoustical So- ciety of America, 82(3), pp. 981–987. https://doi. org/10.1121/1.395298.
- Ganais, K. (2014). Biology and ecology of sardines and ancho- vies. CRC Press, p. 394.
- Garcés, C., Niklitschek, E.J., Plaza, G., Cerna, F., Leisen, M., Toledo, P. and Barra, F. (2019). Anchoveta Engraulis ringens along the Chilean coast: Management units, demographic units and water masses: Insights from multiple otolith‐based approaches. Fisheries Oceanography, 28(6), pp.735–750. https://doi.org/10.1111/fog.12455.
- Gibson, R.N., Atkinson, A. and Gordon (2016). Oceanog- raphy and Marine Biology. 1st ed. [online] CRC Press. Available at: https://www.taylorfrancis.com/chapters/ edit/10.1201/9781420094220-9/review-underwater-stereo- image-measurement-marine-biology-ecology-applications- mark-shortis-euan-harvey-dave-abdo .
- Gutiérrez, M., Swartzman, G., Bertrand, A. and Bertrand, S. (2007). Anchovy (Engraulis ringens) and sardine (Sardinops sagax) spatial dynamics and aggregation patterns in the Humboldt Current ecosystem, Peru, from 1983?2003. Fisheries Oceanography, 16(2), pp. 155–168. https://doi.org/10.1111/j.1365-2419.2006.00422.x
- Gutiérrez, T.M., Castillo, P.J., Naranjo, B.L. and Akester, M.J. (2017). Current state of goods, services and governance of the Humboldt Current Large Marine Ecosystem in the context of climate change. Environmental Develop- ment, 22, pp. 175–190. https://doi.org/10.1016/j.en- vdev.2017.02.006
- Harrison, D.E. and Chiodi, A.M. (2015). Multi-decadal vari- ability and trends in the El Niño-Southern Oscillation and tropical Pacific fisheries implications. Deep Sea Research Part II: Topical Studies in Oceanography, 113, pp. 9–21. https://doi.org/10.1016/j.dsr2.2013.12.020
- Hasegawa, K., Yan, N. and Mukai, T. (2021). In situ broadband acoustic measurements of age-0 walleye pollock and pointhead flounder in Funka Bay, Hokkaido, Japan. Jour- nal of marine science and technology, 29(2). https://doi. org/10.51400/2709-6998.1076
- Hazen, E.L. and Horne, J.K. (2003). A method for evaluating the effects of biological factors on fish target strength. ICES Journal of Marine Science, 60(3), pp. 555–562. https://doi.org/10.1016/S1054-3139(03)00053-5
- Hernández-Santoro, C., Landaeta, M.F. and Jorge Castillo Pizarro (2018). Effect of ENSO on the distribution and con- centration of catches and reproductive activity of anchovy Engraulis ringens in northern Chile. Fisheries Oceanogra- phy, 28(3), pp. 241–255. https://doi.org/10.1016/S1054-3139(03)00053-5
- Hesterberg, T. (2011). Bootstrap. Wiley Interdisciplinary Reviews: Computational Statistics, 3(6), pp. 497–526. https://doi.org/10.1002/wics.182
- Hilborn, R. and Walters, C.J. (2013). Quantitative Fisheries Stock Assessment. Springer eBooks, 3(6), p. 570. https:// doi.org/10.1007/978-1-4615-3598-0
- Hinchliffe, C., Kuriyama, P.T., Punt, A.E., Field, J.C., Thomp- son, A.R., Santora, J.A., Muhling, B.A., Koenigstein, S., Hernvann, P.-Y. and Tommasi, D. (2025). Long-term popu- lation trend of northern anchovy (Engraulis mordax) in the California Current system. ICES Journal of Marine Sci- ence, 82(1). https://doi.org/10.1093/icesjms/fsae177
- IFOP (2025). Programa de seguimiento de las principales pesquerías pelágicas de la zona norte de Chile, entre la Región Arica– Parinacota y Coquimbo, año 2024. Subsec- retaría de Economía y EMT / febrero 2025. IFOP, p. 15.
- Knudsen, H.P. (2006). Gauging the Reliability of Acoustic Instruments for Fisheries Surveys. Oceans, 69, pp. 1–6. https://doi.org/10.1109/OCEANS.2006.307044
- Korneliussen, R.K. (2018). Fifty years of marine tag recoveries from Atlantic salmon. ICES Cooperative Research Report, 343, p. 110. https://doi.org/10.17895/ices.pub.4542
- Kubilius, R., Bergès, B. and Macaulay, G.J. (2023). Remote acoustic sizing of tethered fish using broadband acous- tics. Fisheries Research, 260, p.106585. https://doi. org/10.1016/j.fishres.2022.106585
- Kubilius, R., Macaulay, G.J. and Ona, E. (2020). Remote siz- ing of fish-like targets using broadband acoustics. Fisher- ies Research, 228, p.105568. https://doi.org/10.1016/j.fishres.2020.105568
- Ladroit, Y., Escobar-Flores, P.C., Schimel, A.C.G. and O’Driscoll, R.L. (2020). ESP3: An open-source software for the quantitative processing of hydro-acoustic data. SoftwareX, 12, p. 100581. https://doi.org/10.1016/j. softx.2020.100581
- Letessier, T.B., Proud, R., Meeuwig, J.J., Cox, M.J., Hosegood, P.J. and Brierley, A.S. (2021). Estimating Pelagic Fish Biomass in a Tropical Seascape Using Echosounding and Baited Stereo-Videography. Ecosystems, 25(6), pp. 1400–1417. https://doi.org/10.1007/s10021-021-00723-8
- Loranger, S., Jech, M.J. and Lavery, A.C. (2022). Broadband acoustic quantification of mixed biological aggregations at the New England shelf break. The Journal of the Acousti- cal Society of America, 152(4), pp. 2319–2335. https://doi. org/10.1121/10.0014910
- Love, R.H. (1971). Measurements of fish target strength: a review. Fishery Bulletin, 69(4), pp. 703–715.
- Love, R.H., Fialkowski, J.M. and Jagielo, T.H. (2016). Target strength distributions of Pacific sardine schools: Model results at 500 Hz to 10 kHz. The Journal of the Acoustical Society of America, 140(6), pp. 4456–4471. https://doi. org/10.1121/1.4966553
- Maclennan, D., Fernandes, P. and Dalen, J. (2002). A con- sistent approach to definitions and symbols in fisheries acoustics. ICES Journal of Marine Science, 59(2), pp. 365–369. https://doi.org/10.1006/jmsc.2001.1158
- Nielsen, J. and Lundgren, B. (1999). Hydroacoustic ex situ target strength measurements on juvenile cod (Gadus morhua L.). ICES Journal of Marine Science, 56(5), pp. 627–639. https://doi.org/10.1006/jmsc.1999.0515
- Ñiquen, M. and Bouchon, M. (2004). Impact of El Niño events on pelagic fisheries in Peruvian waters. Deep Sea Re- search Part II: Topical Studies in Oceanography, 51(6-9), pp. 563–574. https://doi.org/10.1016/j.dsr2.2004.03.001
- Ona, E. (1999). Methodology for Target Strength measure- ments (With special reference to in situ techniques for fish and mikro-nekton). ICES Cooperative Research Report, 235(65), p. 35. https://doi.org/10.17895/ices.pub.5367
- Ortiz, M. (2020). Pre-image population indices for anchovy and sardine species in the Humboldt Current System off Peru and Chile: Years decaying productivity. Ecologi- cal Indicators, 119, p. 106844. https://doi.org/10.1016/j. ecolind.2020.106844
- Øvredal, J.T. and Totland, B. (2002). The scantrol FishMe- ter for recording fish length, weight and biological data. Fisheries Research, 55(1-3), pp. 325–328. https://doi. org/10.1016/S0165-7836(01)00274-0.
- Palermino, A., De Felice, A., Canduci, G., Biagiotti, I., Costan- tini, I., Centurelli, M. and Leonori, I. (2023). Application of an analytical approach to characterize the target strength of ancillary pelagic fish species. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-42326-4
- Reid, R.G. (2000). Report on echo trace classification. ICES Cooperative Research Report, 238, p. 155.
- Robotham, H., Bosch, P., Gutiérrez-Estrada, J.C., Castillo, J. and Inmaculada Pulido-Calvo (2009). Acoustic identifica- tion of small pelagic fish species in Chile using support vector machines and neural networks. Fisheries Re- search, 102(1-2), pp. 115–122. https://doi.org/10.1016/j. fishres.2009.10.015
- RStudio, T. (2020). Rstudio: integrated development for r. Rstudio Team. [online] rstudio.com. Available at: http:// www.rstudio.com
- Ryan, T.E., Downie, R.A., Kloser, R.J. and Keith, G. (2015). Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES Journal of Marine Science, 72(8), pp. 2482–2493. https://doi.org/10.1093/icesjms/ fsv121
- Sawada, K., Furusawa, M. and Williamson, N.J. (1993). Condi- tions for the precise measurement of fish target strength in situ. The Journal of The Marine Acoustics Society of Ja- pan, 20(2), pp. 73–79. https://doi.org/10.3135/jmasj.20.73
- Simmonds, J. and MacLennan , D. (2025). Fisheries acoustics: Theory and practice. Fish and Aquatic Resources. [online] https://books.google.cl/books?id=1w5LiIr3NdoC. Available at: https://books.google.cl/books?id=1w5LiIr3NdoC
- Soule, M., Barange, M., Haakon Solli and Hampton, I. (1997). Performance of a new phase algorithm for discriminating between single and overlapping echoes in a split-beam echosounder. ICES Journal of Marine Science, 54(5), pp. 934–938. https://doi.org/10.1006/jmsc.1997.0270