Vol. 54 Núm. 1 (2025)
Articulos de investigación

Estimación de la incorporación de la materia foliar en sedimentos de manglar utilizando bolsas de té verde

Publicado 2025-01-01

Palabras clave

  • Descomposición,
  • Materia orgánica vegetal,
  • Materia orgánica recalcitrante,
  • secuestro de carbono,
  • Zonas semi-áridas,
  • Colombia
  • ...Más
    Menos

Cómo citar

1.
Blanco-Libreros JF. Estimación de la incorporación de la materia foliar en sedimentos de manglar utilizando bolsas de té verde. Bol. Investig. Mar. Costeras [Internet]. 1 de enero de 2025 [citado 7 de enero de 2025];54(1):93-112. Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1323

Resumen

La descomposición de la materia foliar transfiere carbono a los sedimentos de los manglares. El “método de las bolsas de té”, que propone estudiar la descomposición utilizando un substrato estandarizado, aun no se ha implementado en Colombia. Aquí se presenta una adaptación que utiliza bolsas de té verde de una marca local, para estimar la masas remanente a 90 y 180 días en un manglar (Rincón del Mar, Sucre). Se enterraron 192 bolsas en un parche de 165 ha, arregladas en un diseño espacialmente anidado (10 ha, 16 m2, 1 m2, 300 cm2 y 150 cm2) y que fueron retiradas a los 90 días. En un experimento pareado para medir la masa remanente a los 90 y 180 días, se enterraron 48 bolsas en el centro de cada bloque de 1 m2. La masa remanente promedio a los 90 días fue 63,6 % (desviación estándar: 11,8%). No existieron diferencias significativas en el nivel espacial más grueso, sin embargo existío variación significativa dentro de los niveles inferiores. La masa remanente a los 180 días fue significativamente menor (49%). Este estudio demuestra la utilidad del método como una aproximación al proceso de incorporación de carbono orgánico en los sedimentos de manglar.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Adame, M. F., N. Cormier, P. Taillardat, N. Iram, A. Rovai, T. M. Sloey, E. S. Yando, J. F. Blanco-Libreros, M. Arnaud, T. Jennerjahn, C. E. Lovelock, D. Friess, G. M. S. Reithmaier, C. A. Buelow, S. M. Muhammad-Nor, R. R. Twilley and R. A. Ribeiro. 2024. Deconstructing the mangrove carbon cycle: Gains, transformation, and losses. Ecosphere, 15: e4806. https://doi:org/10.1002/ecs2.4806.
  2. Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79: 439–449. https://doi.org/10.2307/3546886.
  3. Aké-Castillo, J. A., G. Vásquez and J. López-Portillo. 2006. Litterfall and decomposition of Rhizophora mangle L. in a coastal lagoon in the southern Gulf of Mexico. Hydrobiologia, 559: 101-111. https://doi.org/10.1007/s10750-005-0959-x
  4. Anderson, K. J., J. S. Kominoski and J. P. Sah. 2024. Intrinsic and extrinsic drivers of organic matter processing along phosphorus and salinity gradients in coastal wetlands. J. Ecol., 112: 1313–1325. https://doi.org/10.1111/1365-2745.14302
  5. Ashton, E. C., P. J. Hogarth and R. Ormond. 1999. Breakdown of mangrove leaf litter ina a managed mangrove forest in Peninsular Malaysia. Hydrobiologia, 413: 77-88.
  6. Bärlocher, F., M. O. Gessner and M. A. S. Graça. 2020. Methods to study litter decomposition. A practical guide. Springer. https://doi.org/10.1007/978-3-030-30515-4
  7. Blanco-Libreros, J. F., S. R. López-Rodríguez, A. M. Valencia-Palacios, G. F. Pérez-Vega and R. Álvarez-León. 2022. Mangroves from rainy to desert climates: Baseline data to assess future changes and drivers in Colombia. Front. For. Glob. Change, 5: 772271. https://doi.org/10.3389/ffgc.2022.772271
  8. Bradford, M. A., G. F.Veen, A. Bonis, E. M. Bradford, A. T. Classen, J.C. Cornelissen, T. W. Crowther, J. R. De Long, G. T. Freschet, P. Kardol, M. Manrubia-Freixa, D. S. Maynard, G. S. Newman, R. P. Logtestijn, M. Viketoft, D. A. Wardle, W. R. Wieder, S. A. Wood andW. H. van der Putten 2017. A test of the hierarchical model of litter decomposition. Nat. Ecol. Evol. 1: 1836–1845. https://doi.org/10.1038/s41559-017-0367-4
  9. Canessa, R., L. van den Brink, A. Saldaña, R. S. Rios, S. Hattenschwiler, C. W. Mueller, I. Prater, K. Tieldborger and M. Y. Bader. 2020. Relative effects of climate and litter traits on decomposition change with time, climate and trait variability. J. Ecol., 109: 447–458. https://doi.org/10.1111/1365-2745.13516
  10. Cebrian, J. 1999. Patterns in the fate of production in plant communities. Am. Nat., 154: 449–68.
  11. Cragg, S. M., D. A. Friess, L. G. Gillis, S. M. Trevathan-Tackett, O. M. Terrett, J. E. M. Watts, D. L. Distel and P. Dupree. 2020. Vascular-plant detritus is a globally significant contributor to marine carbon fluxes and sinks. Ann Rev Mar Sci., 12: 469-497. https://doi.org/10.1146/annurev-marine-010318-095333
  12. Daebeler, A. , E. Petrová, E. Kinz, S. Grausenburger, H. Berthold, T. Sandén and R. Angel. 2022. Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI). Soil, 8: 163-176. https://doi.org/10.5194/soil-8-163-2022
  13. Dahdouh-Guebas, F., J. G. Kairo, R. De Bondt and N. Koedam. 2007. Pneumatophore height and density in relation to micro-topography in the grey mangrove Avicennia marina. Belg. J. Botany, 140: 213–221. http://www.jstor.org/stable/20794640
  14. Didion, M., A. Repo, J. Liski, M. Forsius, M. Bierbaumer and I. Djukic. 2016. Towards harmonizing leaf litter decomposition studies using standard tea bags: a field study and model application. Forests, 7: 167; https://doi.org/10.3390/f7080167
  15. DiNitto, D., F. Dahdouh-Guebas, J. G. Kairo, H. Decleir and N. Koedam. 2008. Digital terrain modelling to investigate the effects of sea level rise on mangrove establishment. Mar. Ecol. Prog. Ser., 356: 175-188.
  16. Djukic, I., S. Kepfer-Rojas, I. K. Schmidt, K. S. Larsen, C. Beier, B. Berg, K. Verheyen and TeaComposition. 2018. Early stage litter decom- position across biomes. Sci. Total Environ., 628–629: 1369–1394. https://doi.org/10.1016/j.scitotenv.2018.01.012
  17. Djukic1, I., S. Kepfer-Rojas, I. Kappel-Schmidt, K. Steenberg Larsen, C. Beier, B. Berg, K. Verheyen, S.M. Trevathan-Tackett, P.I. Macreadie, M. Bierbaumer, G. Patoine, N. Eisenhauer, C.A. Guerra, F.T. Maestre, F. Hagedorn, A. Oggioni, C. Bergami, B. Magagna, T.O. Kwon and H. Shibata. 2021. The TeaComposition initiative: unleashing the power of international collaboration to understand litter decomposition. Soil organisms, 93: 73-78. https://doi.org/10.25674/so93iss1pp73
  18. Duddigan, S., P. D. Alexander, L. J. Shaw, T. Sandén and C. D. Collins. 2020. The Tea Bag Index—UK: Using citizen/community science to investigate organic matter decomposition rates in domestic gardens. Sustainability, 12: 6895. https://doi.org/10.3390/su12176895
  19. Fanin, N., S. Bezaud, J. M. Sarneel, S. Cecchini, M. Nicolas and L. Augusto. 2020. Relative importance of climate, soil, and plant functional traits during the early decomposition stage of standardized litter. Ecosystems, 23: 1004-1018. https://doi.org/10.1007/s10021-019-00452-z
  20. Friesen, S. D., C. Dunn and C. Freeman. 2018. Decomposition as a regulator of carbon accretion in mangroves: A review. Ecol. Eng., 114, 173–178. https://doi.org/10.1016/j.ecoleng.2017.06.069
  21. Galeano-Galeano, E., J. E. Mancera-Pineda y J. H. Medina-Calderón. 2010. Efecto del sustrato sobre la descomposición de hojarasca en tres especies de mangle en la Reserva de Biosfera Seaflower, Caribe colombiano. Caldasia, 32: 411-424.
  22. Hernández-Escobar, L. A., C. Granados-Martínez y R. M. Fuentes-Reinés. 2022. Descomposición acuática de la hojarasca foliar en tres especies de mangle en la desembocadura del río Ranchería (Brazo Riíto) y su relación con los macroinverterbrados en el municipio de Riohacha, Departamento de La Guajira. Ciencia e Ingeniería, 9: e6709388.
  23. Holguín, G., P. Vázquez P. and Y. Bashan. 2001. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol. Fertil. Soils, 33: 265–78.
  24. Keuskamp, J. A., B.J.J. Dingemans, T. Lehtinen, J. M. Sarneel and M. M. Hefting. 2013. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol. Evol., 4: 1070-1075. https://doi.org/10.1111/2041-210X.12097
  25. Keuskamp, J., M. M. Hefting, B. J. J. Dingemans, J. T. A. Verhoeven and I. C. Feller. 2015. Effects of nutrient enrichment on mangrove leaf litter decomposition. Sci. Total Environ., 508: 402-410. http://dx.doi.org/10.1016/j.scitotenv.2014.11.092
  26. Kwon, T., H. Shibata, S. Kepfer-Rojas, I. K. Schmidt, K. S. Larsen, C. Beier C, B. Berg, K. Verheyen, J-F. Lamarque, F. Hagedorn, N. Eisenhauer, I. Djukic and TeaComposition Network. 2021. Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes. Front. For. Glob. Change 4: 678480. https://doi.org/10.3389/ffgc.2021.678480
  27. Lavelle, P., E. Blanchart, A. Martin, S. Martin and A. Spain. 1993. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica, 25: 130–150. https://doi.org/10.2307/2389178
  28. Loría-Naranjo, M., J.A. Sibaja-Cordero and J. Cortés. 2019. Mangrove leaf litter decomposition in a seasonal tropical environment. J. Coastal Res., 35: 122–129. https://www.jstor.org/stable/26568599
  29. Middleton, B.A. and K. L. McKee. 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J. Ecol., 89: 818–828.
  30. Ostergard, R., C. Restrepo, J. W. Dalling, P. H. Martin, I. Abiem, S. Aiba, E. Alvarez-Dávila, R. Aragón, M. Ataroff, H. Chapman, A.Y. Cueva-Agila, B. Fadrique, R.D. Fernández, G. González, S.G. Gotsch, A. Häger, J. Homeier, C. Iñiguez-Armijos, L.D. Llambí, G.W. Moore, R. Reese-Næsborg, L.N. Poma-López, P. Vieira-Pompeu, J.R. Powell, J.A. Ramírez Correa, K. Scharnagl, C. Tobón and C.B. Williams. 2021. Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate. Biotropica, 54: 309-326. https://doi.org/10.1111/btp.13044
  31. Patil, I. 2021. Visualizations with statistical details: The 'ggstatsplot' approach. JOSS, 6: 3167. https://doi.org/10.21105/joss.03167
  32. Pingel, M., A. Reineke and I. Leyer. 2023. Disentangling the mixed effects of soil management on microbial diversity and soil functions: A case study in vineyards. Sci. Rep. 13, 3568. https://doi.org/10.1038/s41598-023-30338-z
  33. Pino, V., A. McBratney, E. O’Brien and W. Ng. 2021. Boosting soil citizen-science using Tea Bag Index method towards soil security in Australia. Soil Secur., 5: 100016. https://doi.org/10.1016/j.soisec.2021.100016
  34. Pouyat, R.V., H. Setälä, I. D. Szlavecz, S. C. Yesilonis, H. Erzsébet, S. Yarwood, D.J. Kotze, M. Dombos, M.P. McGuire and T.H. Whitlow. 2017. Introducing GLUSEEN: a new open access and experimental network in soil ecology. J. Urban Ecol. 3: 1-10. https://doi.org/10.1093/jue/jux002
  35. Powers, J. S., R. A. Montgomery, E. C. Adair, F. Q. Brearley, S. J. Dewalt, C. T. Castanho, et al. 2009. Decomposition in tropical forests: a pan-tropical study on the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecol., 97: 801-811. https://doi.org/10.1111/j.1365-2745.2009.01515.x
  36. Pradsty, N. A., A. A. Amir and M. Zimmer. 2021. Plant species- and stage-specific differences in microbial decay of mangrove leaf litter: the older the better? Oecologia, 195: 843-858. https://doi.org/10.1007/s00442-021-04865-3
  37. Quadros, A. F. and M. Zimmer. 2017. Dataset of “true mangroves” plant species traits. Biodiver. Data J., 5: e22089. https://doi.org/10.3897/BDJ.5.e22089
  38. Quadros, A. F., V. Helfer, I. Nordhaus, H. Reuter and M. Zimmer. 2021. Functional traits of terrestrial plants in the intertidal: A review on mangrove trees. Biol. Bull., 241: 123-139. https://doi.org/10.1086/716510.
  39. Riascos, J. and J. F. Blanco-Libreros. 2019. Pervasively high mangrove productivity in a major tropical delta throughout an ENSO cycle (Southern Caribbean, Colombia). Estuar. Coast. Shelf S., 227: 106301. https://doi.org/10.1016/j.ecss.2019.106301
  40. Rodríguez-Ramírez, A., J. Nivia-Ruíz y J. Garzón-Ferreira. 2004. Características estructurales y funcionales del manglar de Avicennia germinans en la bahía de Chengue (Caribe colombiano). Bol. Invest. Mar. Cost., 33: 223-244.
  41. Rodríguez-Ramírez, A., J. Garzón-Ferreira, A. Batista-Morales, D. L. Gil. D. I. Gómez-López, K. Gómez-Campo, T. López-Londoño, G. Navas-Camacho, M. C. Reyes-Nivia and J. Vega-Sequeda. 2010. Temporal patterns in coral reef, seagrass and mangrove communities from Chengue bay CARICOMP site (Colombia): 1993-2008. Rev. Biol. Trop., 58: 45-62.
  42. Ruiz-Roldán, J. J., J. F. Blanco-Libreros y S. R. López-Rodríguez. 2023. Mapeo de manglares utilizando cómputo en la nube y un índice espectral específico para apoyar acciones de manejo: un caso del Caribe colombiano semiárido. Ecosistemas 32: 2599. https://doi.org/10.7818/ECOS.2599
  43. Sandén, T., H. Spiegel, H. Wenng, M. Schwarz and J. M. Sarneel. 2020. Learning science during teatime: using citizen science approach to collect data on litter decomposition in Sweden and Austria. Sustainability, 12: 7745. https://doi.org/10.3390/su12187745
  44. Sandén, T., A. Wawra, H. Berthold, J. Miloczki, A. Schweinzer, B. Gschmeidler, H. Spiegel, M. Debeljak and A. Trajanov. 2021. TeaTime4Schools: Using data mining techniques to model litter decomposition in Austrian urban school soils. Front. Ecol. Evol., 9: 703794. https://doi.org/10.3389/fevo.2021.703794
  45. Sapp, M., N. Tyborski, A. Linstädter, A. López-Sánchez, T. Mansfeldt, G. Waldhoff, G. Bareth, M. Bonkowski and L.E. Rose. 2019. Site‐specific distribution of oak rhizosphere‐associated oomycetes revealed by Cytochrome C Oxidase subunit II metabarcoding. Ecol. Evol., 9: 10567–10581. https://doi.org/10.1002/ece3.5577
  46. Sarneel, J., M. Hefting, T. Sandén and J. Keuskamp. 2024. Global TBI data of woven bags, incubated 45-135 days under ambient conditions [Data set]. En: Reading tea leaves worldwide: decoupled drivers of initial litter decomposition mass-loss rate and stabilization. Zenodo. https://doi.org/10.5281/zenodo.10514225
  47. Sierra-Rozo, O., J. E. Mancera-Pineda y A. Santos-Martínez. 2009. Velocidad de descomposición de la hojarasca en diferentes substratos de manglar durante la época de lluvias en San Andrés Isla, Caribe colombiano. Bol. Inst. Mar. Cost, 38: 59-84.
  48. Simpson, L. T., S. K. Chapman, L. M. Simpson and J. A. Cherry. 2023. Do global change variables alter mangrove decomposition? A systematic review. Global Ecol. Biogeogr., 32: 1874–1892. https://doi. org/10.1111/geb.13743
  49. Stagg, C. L., M. M. Baustian, C. L. Perry, T. J. B. Carruthers and C. T. Hall. 2017. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. J Ecol., 106: 655–670. https://doi.org/10.1111/1365-2745.12901
  50. TeaComposition Initiative. (2024). Global Litter Decomposition Study. https://www.teacomposition.org/explore-data/. 20/04/2024.
  51. Teatime4Science. (2024). Tea Bag Index. www.teatime4science.org. 20/04/2024.
  52. Trevathan-Tackett, S.M. S. Kepfer-Rojas, A.H. Engelen, P.H. York, A. Ola, J. Li, J.J. Kelleway, K.I. Jinks, E.L. Jackson, M.F. Adame, E. Pendall, C.E. Lovelock, R.M. Connolly, A. Watson, I. Visby, A. Trethowan, B. Taylor, T. N.B. Roberts, J. Petch, L. Farrington, I. Djukic and P.I. Macreadie. 2021. Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale. Sci. Total Environ., 782: 146819. https://doi.org/10.1016/j.scitotenv.2021.146819
  53. Twilley, R. R., M. Pozo, V. H. García, V. H. Rivera-Monroy, R. Zambrano and A. Bodero. 1997. Litter dynamics in riverine mangrove forests in the Guayas River estuary Ecuador. Oecologia, 111: 109–122.
  54. Vinh, T. V., M. Allenbach, K. T. V. Linh and C. Marchand. 2020. Changes in leaf litter quality during its decomposition in a tropical planted mangrove forest (can Gio, Vietnam). Front. Environ. Sci., 8: 1–15. https://doi.org/10.3389/fenvs.2020.00010
  55. Wang, B., H. Blondeel, L. Baeten, I. Djukic, E. De Lombaerde and K. Verheyen, 2019. Direct and understorey-mediated indirect effects of human-induced environmental changes on litter decomposition in temperate forests. Soil Biol. Biochem. 138: 107579. https://doi.org/10.1016/j.soilbio.2019.107579
  56. Zuur, A. F., E. N. Ieno and C. S. Elphick. 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol., 1: 3-14. https://doi.org/10.1111/j.2041-210X.2009.00001.x