Articulos de investigación
Identificación de florecimientos fitoplanctónicos en el estrecho de Gerlache, Península Oeste Antártica
Publicado 2021-05-26
Palabras clave
- Coeficientes de absorción,
- Índice Bio-optico de florecimientos fitoplanctonicos,
- Índice de tamaño,
- Estrecho de Gerlache,
- fitoplancton
Cómo citar
1.
Cañon Paez ML, Santamaría del Ángel E. Identificación de florecimientos fitoplanctónicos en el estrecho de Gerlache, Península Oeste Antártica. Bol. Investig. Mar. Costeras [Internet]. 26 de mayo de 2021 [citado 22 de diciembre de 2024];50(SuplEsp):13-30. Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/922
Derechos de autor 2021 Boletín de Investigaciones Marinas y Costeras
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Resumen
Con la finalidad de identificar florecimientos fitoplanctónicos, se utilizó el índice de propiedades ópticas inherentes (POIíndice) en muestras de agua de la superficie y el máximo de clorofila-a (MPC) que fueron tomadas en la Tercera (enero de 2017) y en la Cuarta Expedición (enero 2018) de Colombia a la Antártida en el Estrecho de Gerlache (EG). El POIíndice se calculó partir de las anomalías espaciales estandarizadas de los coeficientes de absorción del fitoplancton, el detritus y la materia orgánica disuelta coloreada (CDOM) usando la longitud de onda 443. Además se calculó el índice de tamaño del fitoplancton mediante la razón Azul/Rojo y este se relacionó con el POIsíndice para determinar la estructura de tamaño del fitoplancton responsable de los florecimientos. En 2017 se identificó a cuatro estaciones en condiciones de florecimiento, siendo dos superficiales y dos subsuperficiales; a tres en condiciones de descenso del florecimiento y a doce en condiciones de no florecimiento, con una estructura de tamaño diversa donde predominaron poblaciones del micro, nano y del picofiplancton. En 2018 dos estaciones se identificaron en condiciones de florecimiento, siendo uno superficial y otro subsuperficial; a dos en condiciones de descenso del florecimiento y nueve en condiciones de no florecimiento, la estructura de tamaño que domino los florecimientos fue el microfitoplancton. Con el POIsíndice, se observaron en las dos expediciones condiciones susbsuperficiales de florecimientos, probándose además su efectividad para florecimientos generados por condiciones naturales o estacionales en diferentes profundidades de la columna de agua.Descargas
Los datos de descargas todavía no están disponibles.
Citas
- Aguilar-Maldonado, J., Santamaría-del-Ángel, E., González-Silvera A., Cervantes-Rosas, O., Lopez, L., Gutiérrez-Magness, A., Cerdeira-Estrada, S., Sebastiá-Frasquet, M.T. 2018a. Identification of Phytoplankton Blooms under the Index of Inherent Optical Properties ( IOP Index ) in Optically Complex Waters. 1–17. https://doi.org/10.3390/w10020129.
- Aguilar-Maldonado, J.A., Santamaría-Del-Ángel, E., González-Silvera, A., Cervantes-Rosas, O.D., Sebastiá-Frasquet, M.T., 2018b. Mapping satellite inherent optical properties index in coastal waters of the Yucatán Peninsula (Mexico). Sustain. 10, 1–20. https://doi.org/10.3390/su10061894.
- Aguilar-Maldonado, J., Santamaría-del-Ángel, E., González-Silvera A., Sebastiá-Frasquet, M.T. 2019. Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms. Sensors 550401.
- Arnone, R., Babin, M., Barnard, A.H., Boss, E., Cannizzaro, J.P., Carder, K.L., Chen, F.R., Devred, E., Doerffer, R., Du, K., Hoge, F., Kopelevich, O. V, Platt, T., Poteau, A., Roesler, C., Sathyendranath, S., 2006. Reports of the International Ocean-Colour Coordinating Group Remote Sensing of Inherent Optical Properties : Fundamentals , Tests of Algorithms , and Applications.
- Babin, M., D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner. 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe, J. Geophys. Res., 108(C7), 3211, https://doi:10.1029/2001JC000882.
- Barocio-León OA, Millán-Núñez R, Santamaría-del-Ángel E, González-Silvera A, Trees CC. 2006. Spatial variability of phytoplankton absorption coefficients and pigments off Baja California during November 2002. J. Oceanogr. 62: 873–885.
- Bricaud, A., M. Babin, A. Morel, and H. Claustre. 1995. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization, J. Geophys. Res., 100, 13,321– 13,332.
- Bricaud, A., Claustre, H., Ras, J., Oubelkheir, K. 2004. Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J. Geophys. Res. 109: C11010.
- Cañon-Páez, M.L., Santamaría-del-Ángel, E., Lopez Calderón J.M., González-Silveira A.G., Camacho-Ibar V.F., Franco-Herrera A. (in preparation) Changes in Community Structure Based on the Reconstruction of Type Spectra of the Specific Absorption Coefficient of Phytoplankton in the Gerlache Strait. To be Submitted to Polar Science 2019.
- Ciotti, A.M., Lewis, M.R., Cullen, J.J. 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol. Oceanogr. 47(2): 404–417
- Cota, G.F., G. Harrison, T. Platt, S. Sathyendranath,and V. Stuart. 2003. Bio-optical properties of the Labrador Sea. J. Geophys. Res. 108, 3228. https://doi.org/10.1029/2000JC000597.
- Doval, M.D; Alvarez-Salgado X. Castro C. Perez F.2002. Dissolved organic carbon distributions in the Bransfield and Gerlache Straits, Antarctica. Deep-Sea Research II (49), Pp 663–674.
- Falkowski, P.G. and Raven J. (2007). Aquatic Photosynthesis, second edition. Princeton 476 p.
- Figueroa, L., 2002. Bio-optical characteristics of Gerlache and Bransfield Strait waters during an Antarctic summer cruise 49, 675–691.
- García M., Castroc C., Ríos A., Doval M., Rosón G., Gomise D., López O. 2002. Water masses and distribution of physico-chemical properties in the Western Bransfield Strait and Gerlache Strait during Austral summer 1995/96. Deep-Sea Research II (49), Pp 585–602.
- Gonçalves-Araujo R., M. Silva de Souza, V. Tavano, C. Eiras, 2015. Influence of oceanographic features on spatial and interannual variability of phytoplankton in the Bransfield Strait, Journal of Marine Systems 142 (2015) 1–15.
- Holm-Hansen , B.G., Hewes, C.D., Karl, D.M., 1989. Phytoplankton blooms in the vicinity of Palmer Station , Antarctica Phytoplankton Blooms in the Vicinity of Palmer Station , Antarctica. https://doi.org/10.1007/BF00238290.
- IOCCG. 2014. Phytoplankton Functional Types from Space. Sathyendranath, S. (ed.), Reports of the International Ocean-Colour Coordinating Group, No. 15, IOCCG, Dartmouth, Canada.
- IOCCG (2015). Ocean Colour Remote Sensing in Polar Seas. Babin, M., Arrigo, K., Bélanger, S.and Forget, M-H. (eds.), IOCCG Report Series, No. 16, International Ocean Colour Coordinating Group, Dartmouth, Canada.
- Kerr, R., Orselli, I.B.M., Lencina-Avila, J.M., Eidt, R.T., Mendes, C.R.B., da Cunha, L.C., Goyet, C., Mata, M.M., Tavano, V.M., 2018. Carbonate system properties in the Gerlache Strait, Northern Antarctic Peninsula (February 2015): I. Sea–Air CO2 fluxes. Deep. Res. Part II Top. Stud. Oceanogr. 149, 171–181. https://doi.org/10.1016/j.dsr2.2017.02.008.
- Kim H, W. Ducklow, M. Ruiz Barlett, J. Buma, P. Meredith, D. Rozem, M. Schofield, J. Venables, R. Schloss. 2018. Inter-decadal variability of phytoplankton biomass along the coastal West Antarctic Peninsula. Phil. Trans. R. Soc. A 376: 20170174. http://dx.doi.org/10.1098/rsta.2017.0174.
- Kirk, J.T.O. 2011. Light and photosynthesis in aquatic ecosystems. 3er edition. Cambridge University Press, Cambridge.649p.
- MacIntyre H.L., T.M. Kana, J. Anning, R. Geider. 2002. Photoaclimation of photosynthesis irradianceresponse curves and photosynthetic pigments in microalgae and cyanobacteria. Journalof Phycology, 38:17-38.
- Matsuoka, A., Hill, V., Huot, Y., Babin, M., Bricaud, A., 2011. Seasonal variability in the light absorption properties of western Arctic waters : Parameterization of the individual components of absorption for ocean color applications 116, 1–15. https://doi.org/10.1029/2009JC005594.
- Mendes, C.R.B., de Souza, M.S., Garcia, V.M.T., Leal, M.C., Brotas, V., Garcia, C.A.E., 2012. Dynamics of phytoplankton communities during late summer around the tip of the Antarctic Peninsula. Deep-Sea Res. I 65, 1–14.
- Mendes, C.R.B., Tavano, V.M., Leal, M.C., de Souza, M.S., Brotas, V., Garcia, C.A.E.. 2013.Shifts in the dominance between diatoms and cryptophytes during three late summers in the Bransfield Strait (Antarctic Peninsula). Polar Biol. http://dx.doi.org/10.1007/s00300-012-1282-4.
- Mendes, C.R.B., Tavano VM., Segabinazzi, T., Kerr R., Silva de Souza M, Eiras C. Resende E., 2018. New insights on the dominance of cryptophytes in Antarctic coastal waters: A case study in Gerlache Strait. Deep Sea Research Part II: Topical Studies in Oceanography. Volume 149: 161-170.
- Millán-Nuñez, E.; Millán-Nuñez, R. 2010. Specific Absorption Coefficient and Phytoplankton Community Structure in the Southern Region of the California Current during January 2002. J. Oceanogr., 66,719–730.
- Mitchell, B.G., Kahru, M., Wieland, J., Stramska, M., 2002. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In: Mueller JL, Fargion GS, McClain R (eds) Ocean Optics protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols. NASA/TM-2003-211621, NASA Goddard Space Flight Center. Greenbelt, MD. (Chapter 4), 39–60. Palma, E.D., Matano, R.P., 2012. A numerical study of the Mage.
- Ortega-Retuerta, E., Frazer, T.K., Duarte, C.M., Ruiz-halpern, S., Tovar-sa, A., Arrieta, M., Reche, I., 2009. Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the Southern Ocean 54, 1941–1950.
- Ortega-Retuerta, E., Reche, I., Pulido-villena, E., Agustí, S., Duarte, C.M., 2010. Distribution and photoreactivity of chromophoric dissolved organic matter in the Antarctic Peninsula ( Southern Ocean ). Mar. Chem. 118, 129–139. https://doi.org/10.1016/j.marchem.2009.11.008.
- Preisendorfer, R.W. Application of Radiative Transfer Theory to Light Measurements in the Sea; IUGG: Potsdam,Germany, 1961; Volume 10, pp. 11–30.
- Rodriguez, F., Varela, M., Zapata, M., 2002. Phytoplankton assemblages in the Gerlache and Bransfield Straits ( Antarctic Peninsula ) determined by light microscopy and CHEMTAX analysis of HPLC pigment data 49, 723–747.
- Roy S., C. Llewellyn, E. Skartad and, G. Johnsen. 2011. Phytoplankton pigments.Characterization, Chemotaxonomy and Applications in Oceanography. Cambridge environmental chemistry series. Published in the United States of America by Cambridge University Press, New York. 892 p. ISBN 978-1-107-00066-7.
- Sangra, P., Gordo, C., Hernández-Arencibia, M., Marrero-Díaz, A., Rodríguez-Santana, A., Stegner, A., Martítez-Marrero, A., Pelegrí, J.L., Pichon, T., 2011. The Bransfield current system. Deep Sea Res. Part I: Ocean. Res. Pap. 58 (4), 390–402.
- Santamaría-del-Ángel, E.; González-Silvera, A.; Millán-Nuñez, R.; Callejas-Jiménez, M.E.; Cajal-Medrano, R. 2011. Determining Dynamic Biogeographic Regions using Remote Sensing Data. In Handbook of Satellite RemoteSensing Image Interpretation: Applications for Marine Living Resources Conservation and Management; Morales, J.,Stuart, V., Platt, T., Sathyendranath, S., Eds.; EU PRESPO and IOCCG: Dartmouth, NS, Canada,;Chapter 19, pp. 273–293.
- Santamaría-del-Ángel, E., Soto, I., Wolny, J., Cerdeira-Estrada, S., Cajal-Medrano, R., Muller-Karger, F., Cannizzaro, J., Padilla-Rosas, Y.X.S., Mercado-Santana, A., Gracia-Escobar, M.F., Alvarez-Torres, P., Ruiz-de-la-Torre, M.C., 2015. P HYTOPLANKTON B LOOMS : N EW I NITIATIVE U SING M ARINE O PTICS Complimentary Contributor Copy.Varela, M., Fernandez, E., Serret, P., 2002. Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995-1996. Deep. Res. Part II Top. Stud. Oceanogr. 49, 749–768. https://doi.org/10.1016/S0967-0645(01)00122-9.
- Varela M., Fernandez E. & Serret P. 2002. Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep-Sea Research II (49), Pp 749–768
- Vidussi, F., H. Claustre, B.B. Manca, A. Luchetta y J.C. Marty. 2001. Phytoplankton pigment distributionin relation to upper thermocline circulation in the eastern Mediterranean Sea duringwinter, Journal of Geophysical Research 106(C9): 19939-19956.
- Wright, S.W., S.W. Jeffrey, R.F. Mantoura, C.A. Llewellyn, T. Bjornland, D. Repeta y N. Welschmeyer, 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series, 77: 183-196.
- Wright, S. W., and S. W. Jeffrey. 2006. Pigment markers for phytoplankton production, in Marine Organic Matter: Biomarkers, Isotopes and DNA, edited by J. K. Volkmann, pp. 71–104, Spring, Berlin.
- Wu, J., Hong, H., Shang, S., Dai, M., Lee, Z., Wu, J., Hong, H., Shang, S., Dai, M., Variation, Z.L., 2007. Variation of phytoplankton absorption coefficients in the northern South China Sea during spring and autumn To cite this version : HAL Id : hal-00297894 Variation of phytoplankton absorption coe ffi cients in the northern South China Sea during spring and.
- Zhou, M., Niiler, P.P., Hu, J.H., 2002. Surface currents in the Bransfield and Gerlache Straits, Antarctica. Deep Sea Res. Part I: Ocean. Res. Pap. 49 (2), 267–280.