Vol. 49 Núm. 1 (2020)
Articulos de investigación

Estimación del riesgo ecológico y a la salud humana del mercurio en una zona de manglar del estuario La Puntilla, provincia de El Oro, sur del Ecuador

Patricio Colón Velásquez-López
Carrera de Ingeniería Acuícola, Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, Machala
Ivonne Yadira López-Sánchez
Carrera de Ingeniería Ambiental, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba
María Fernanda Rivera-Velásquez
Grupo de Investigación Ciencias de Datos, Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo, Riobamba

Publicado 2020-07-16

Palabras clave

  • índice de riesgo ecológico,
  • mercurio,
  • Anadara tuberculosa,
  • ecosistema de manglar

Cómo citar

1.
Velásquez-López PC, López-Sánchez IY, Rivera-Velásquez MF. Estimación del riesgo ecológico y a la salud humana del mercurio en una zona de manglar del estuario La Puntilla, provincia de El Oro, sur del Ecuador. Bol. Investig. Mar. Costeras [Internet]. 16 de julio de 2020 [citado 22 de diciembre de 2024];49(1):81-100. Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/931

Resumen

El presente estudio se centra en la evaluación de los niveles de concentración de mercurio total y la estimación del riesgo ecológico (Er), el índice de riesgo ecológico (RI) y el coeficiente de riesgo tóxico o peligro (HQ) para la salud humana en un área de manglar junto a las desembocaduras de los ríos Chaguana y Siete, en el estuario de La Puntilla en el sur de Ecuador. Para la determinación de Er, RI y HQ, identificamos tres indicadores de contaminación por mercurio: sedimentos, raíz de mangle y tejido blando del bivalvo Anadara tuberculosa. En el área de manglar que bordea la desembocadura del río Chaguana, las concentraciones de mercurio fluctuaron entre 0,11±0,06 mg/kg en sedimentos, 0,06±0,01mg/kg en raíz de mangle, con una consistente presencia de A. tuberculosa, pero solo una muestra del bivalvo registró un nivel de 0,034 mg/kg de mercurio. En contraste, en el área de manglar adyacente a la desembocadura del río Siete, las concentraciones de mercurio oscilaron entre 0,77±0,42 mg/kg en sedimentos y 0,15±0,12 mg/kg en la raíz de manglar, siendo imperceptible la presencia de A. tuberculosa. Los resultados del análisis de riesgo indicaron que en la desembocadura del río Chaguana, el Er y el índice de RI se colocaron en la categoría “baja”. En contraste, en la desembocadura del río Siete, el Er resultó “alto” y RI resultó “moderado”. El riesgo potencial para la salud humana fue bajo, en consistencia con el valor de HQ < 1 que considera el consumo de A. tuberculosa y el contacto dérmico a través de sedimentos; sin embargo, la escasa presencia del bivalvo en la desembocadura del río Siete es de preocupación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Alongi, D.M. 2013. Mangrove-microbe-soil relations. Interactions between macro- and microorganisms in marine sediments: 85-103. https://doi.org/10.1029/CE060p0085
  2. Andren, A.W. and R.C. Harriss. 1975. Observations on the association between mercury and organic matter dissolved in natural waters. Geochim. Cosmochim. Acta, 39: 1253-1258. https://doi.org/10.1016/0016-7037(75)90132-5.
  3. Appleton, J.D., T.M. Williams, H. Orbea and M. Carrasco. 2001. Fluvial contamination associated with artisanal gold mining in the Ponce Enriquez, Portovelo-Zaruma and Nambija areas, Ecuador. Water Air Soil Poll., 131(1-4): 19-39.
  4. Bazzi, A. 2014. Heavy metals in seawater, sediments and marine organisms in the Gulf of Chabahar, Oman Sea. J. Oceanogr. Mar. Sci., 5(3): 20-29. https://doi.org/10.5897/JOMS2014.0110.
  5. Cardoso, P.G., A.I. Lillebø, E. Pereira, A.C. Duarte and M.A. Pardal. 2009. Different mercury bioaccumulation kinetics by two macrobenthic species: the bivalve Scrobicularia plana and the polychaete Hediste diversicolor. Mar. Environ. Res., 68(1): 12-18. https://doi.org/10.1016/j.marenvres.2009.03.006.
  6. Carling, G.T., X. Diaz, M. Ponce, L. Perez, L. Nasimba, E. Pazmino and W.P. Johnson. 2013. Particulate and dissolved trace element concentrations in three southern Ecuador rivers impacted by artisanal gold mining. Water Air Soil Poll., 224(2): 1415.
  7. Center for Environmental & Human Toxicology. 2005. Final technical report: Development of Cleanup Target Levels (CTLs). Division of Waste Management FDEP.
  8. Chen, C.Y., M. Dionne, B.M. Mayes, D.M. Ward, S. Sturup and B.P. Jackson. 2009. Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine. Environ. Sci. Technol., 43(6): 1804-10. https://doi.org/10.1021/es8017122.
  9. Claisse, D., D. Cossa, J. Bretaudeau-Sanjuan, G. Touchard and B. Bombled. 2001. Methylmercury in molluscs along the French coast. Mar. Pollut. Bull., 42(4): 329-332. https://doi.org/10.1016/S0025-326X(01)00036-4.
  10. Dallinger, R. 1993. Strategies of metal detoxification in terrestrial invertebrates: 245-289. In Ecotoxicology of metals in invertebrates. Lewis Publishers, London.
  11. Denil, D.J., F.F. Ching and J. Ransangan. 2017. Health risk assessment due to heavy metals exposure via consumption of bivalves harvested from Marudu Bay, Malaysia. Open J. Mar. Sci., 7: 494-510. https://doi.org/10.4236/ojms.2017.74035.
  12. Elder, J.F. and J.J. Collins. 1991. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems. Rev. Environ. Contam. Toxicol., 122: 37-79. https://doi.org/10.1007/978-1-4612-3198-1_2.
  13. Environmental Protection Agency. 1997. Analysis of risk for environmental pollutants application of deterministic and probabilistic methods for a school scenario.
  14. Hakanson, L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res., 14(8): 975-1001. https://doi. org/10.1016/0043-1354(80)90143-8.
  15. Huang, S., R. Jiang, Q. Song, Y. Zhang, Q. Huang, B. Su, ... and H. Lin. 2020. Study of mercury transport and transformation in mangrove forests using stable mercury isotopes. Sci. Total Environ., 704, 135928.
  16. Institute of Marine and Coastal Research. 2013. Manual of analytical techniques for the determination of isicochemical parameters and marine pollutants (water, sediments and organisms). Inst. Coast. Mar. Res., Santa Marta. https://doi.org/10.1017/ CBO9781107415324.004.
  17. Jakimska, A., P. Konieczka, K. Skóra and J. Namieśnik. 2011. Bioaccumulation of metals in tissues of marine animals, Part I: the role and impact of heavy metals on organisms. Pol. J. Environ. Stud., 20(5): 1117-1125.
  18. Kehrig, H. A., M. Costa, I. Moreira and O. Malm. 2006. Total and methyl mercury in different species of molluscs from two estuaries in Río de Janeiro state. J. Braz. Chem. Soc., 17(7): 1409-1418.
  19. Lacerda, L.D., C.E. Carvalho, K. Tanizaki, A. Ovalle and C. Rezende. 1993. The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica, 252-257.
  20. Le, D.Q., K. Tanaka, L.V. Dung, Y.F. Siau, L. Lachs, S.T. Kadir, ... and K. Shirai. 2017. Biomagnification of total mercury in the mangrove lagoon foodweb in east coast of Peninsula, Malaysia. Reg. Stud. Mar. Sci., 16, 49-55. https://doi.org/10.1016/j.rsma.2017.08.006
  21. Maanan, M. 2008. Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environ. Poll., 153(1): 176-183. https:// doi.org/10.1016/j.envpol.2007.07.024.
  22. Marchand, C., E. Lallier-Vergès, F. Baltzer, P. Albéric, D. Cossa and P. Baillif. 2006. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Mar. Chem., 98(1): 1-17. https://doi.org/10.1016/j.marchem.2005.06.001.
  23. Marín, A., V.H. González, B. Lapo, E. Molina y M. Lemus. 2016. Niveles de mercurio en sedimentos de la zona costera de El Oro, Ecuador. Gayana, 80(2): 147-153. http://dx.doi.org/10.4067/S0717-65382016000200147
  24. Medina, M.H., J. Correa and C. Barata. 2007. Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress. Chemosphere, 67(11): 2105-2114. https://doi.org/10.1016/j.chemosphere.2006.12.024.
  25. Morel, F.M., A. Kraepiel and M. Amyot. 1998. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst., 29(1): 543-66. https://doi.org/10.1146/annurev.ecolsys.29.1.543.
  26. Otchere, F.A. 2019. A 50-year review on heavy metal pollution in the environment: Bivalves as bio-monitors. Afr. J. Environ. Sci. Tech., 13(6): 220-227.
  27. Otchere, F.A., C.R. Joiris and L. Holsbeek. 2003. Mercury in the bivalves Anadara (Senilia) senilis, Perna perna and Crassostrea tulipa from Ghana. Sci. Total Environ., 304: 369-375. https://doi.org/10.1016/S0048-9697(02)00582-X
  28. Riget, F., P. Johansen and G. Asmund. 1996. Influence of length on element concentrations in blue mussels (Mytilus edulis). Mar. Pollut. Bull., 32(10): 745-51. doi:10.1016/0025-326X(96)00067-7
  29. Santana, V., G. Medina y A. Torre. 2014. El convenio de Minamata sobre el mercurio y su implementación en la región de América Latina y el Caribe. http://www.mercuryconvention.org/Portals/11/documents/publications/informe_Minamata_LAC_ES_FINAL.pdf.
  30. Scardino, A., R. De Nys, O. Ison, W. O’Connor and P. Steinberg. 2003. Microtopography and antifouling properties of the shell surface of the bivalve molluscs Mytilus galloprovincialis and Pinctada imbricata. Biofouling, 19: 221-230. doi: 10.1080/0892701021000057882.
  31. Schudel, G., R.A. Miserendino, M.M. Veiga, P.C. Velásquez-López, P.S.J. Lees, S. Winland-Gaetz, J.R. Guimarães and B.A. Bergquist. 2018. An investigation of mercury sources in the Puyango-Tumbes River: using stable Hg isotopes to characterize transboundary Hg pollution. Chemosphere, 202: 777-787. https://doi.org/10.1016/j.chemosphere.2018.03.081.
  32. Schudel, G., R. Kaplan, R.A. Miserendino, M.M. Veiga, P.C. Velásquez-López, J.R. Davée Guimarães and B.A. Bergquist. 2019. Mercury isotopic signatures of tailings from artisanal and small-scale gold mining (ASGM) in southwestern Ecuador. Sci. Total Environ., 686: 301-10. https:// doi.org/10.1016/j.scitotenv.2019.06.004.
  33. Secretaria Nacional de Planificación y Desarrollo. 2009. Evaluación social y técnica de los recursos hídricos de las subcuencas de los ríos Jagua, Balao, Gala, Tengel y Siete, en la provincia de Azuay. https://es.scribd.com/doc/29929927/INVENTARIO-R-HIDRICOS-JAGUA-TENGUELGALA-SIETE.
  34. Sevillano, J.S., M. Cejudo-Gómez, A.M. Ramírez-Ojeda, F. Cámara-Martos and R. Moreno-Rojas. 2015. Risk profile of methylmercury in seafood. Curr. Opin. Food. Sci., 6: 53-60. https://doi.org/10.1016/j.cofs.2016.01.003.
  35. Silva, F.S., W. Machado, F. Lisboa and D. Lacerda. 2003. Mercury accumulation in sediments of a mangrove ecosystem in SE Brazil. Water Air Soil Poll., 145: 67-77. https://doi.org/10.1023/A.
  36. Tam, N. e Y. Wong. 1995. Spatial and temporal variations of heavy metal contamination in sediments of a mangrove swamp in Hong Kong. Mar. Pollut. Bull., 31(4-12): 254-261. https://doi.org/10.1016/0025-326X(95)00141-9.
  37. Tarras-Wahlberg, N.H., A. Flachier, G. Fredriksson and S. Lane. 2000. Environmental impact of small-scale and artisanal gold mining in southern Ecuador. AMBIO, 29(8): 484-491. doi: 10.1579/0044-7447-29.8.484
  38. U.S. Environmental Protection Agency. 1989. Risk assessment guidance for superfund. Vol. I Human Health Evaluation Manual (Part A). https://doi. org/EPA/540/1-89/002.
  39. U.S. Environmental Protection Agency. 2001. Water quality criterion for the protection of human health: methylmercury. Methylmercury water quality criterion. EPA-823-R-. https://doi.org/EPA-823-F-01-001.
  40. U.S. Environmental Protection Agency. 2002. Calculating upper confidence limits for exposure point concentrations at hazardous waste sites. Washington.
  41. Vane, C.H., I. Harrison, A.W. Kim, V. Moss-Hayes, B.P. Vickers and K. Hong. 2009. Organic and Metal contamination in surface mangrove sediments of south China. Mar. Pollut. Bull., 58: 134-144. https://doi.org/10.1016/j.marpolbul.2008.09.024.
  42. Velásquez López, P.C., M.M. Veiga, B. Klein, J.A. Shandro and K. Hall. 2011. Cyanidation of mercury-rich tailings in artisanal and small-scale gold mining: identifying strategies to manage environmental risks in southern Ecuador. J. Clean. Prod., 19(9-10): 1125-1133. https://doi.org/10.1016/j. jclepro.2010.09.008.
  43. World Health Organization. 1996. Guidelines for drinking water quality. Vol. 2. Geneva: WHO library.
  44. World Health Organization. 2008. Guidance for identifying populations at risk from mercury exposure. Geneva. https://doi.org/10.1289/ehp.7856.
  45. Zuykov, M., E. Pelletier, C. Belzile and S. Demers. 2011. Alteration of shell nacre micromorphology in blue mussel Mytilus edulis after exposure to free-ionic silver and silver nanoparticles. Chemosphere, 84: 701-706. doi: 10.1016/j.chemosphere.2011.03.021
  46. Zuykov, M., E. Pelletier, R. St-Louis, A. Checa and S. Demers. 2012. Biosorption of thorium on the external shell surface of bivalve mollusks: The role of shell surface microtopography. Chemosphere, 86: 680-683. https://doi.org/10.1016/j.chemosphere.2011.11.023