This is an outdated version published on 2020-07-16. Read the most recent version.

Effect of Bacillus firmus C101 on the growth of Litopenaeus vannamei Boone (White Shrimp) post-larvae, and Brachionus plicatilis s.s. Müller (Rotifer)

Authors

  • Jordan Steven Ruiz-Toquica Programa de Biología Marina, Facultad de Ciencias Naturales e Ingenierías, Fundación Universidad de Bogotá Jorge Tadeo Lozano, Bogotá https://orcid.org/0000-0002-5456-2434
  • Laura Milena Becerra-Real Programa de Biología Marina, Facultad de Ciencias Naturales e Ingenierías, Fundación Universidad de Bogotá Jorge Tadeo Lozano, Bogotá https://orcid.org/0000-0003-3565-2343
  • Luisa Marcela Villamil Díaz Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Chía https://orcid.org/0000-0003-2188-5453

DOI:

https://doi.org/10.25268/bimc.invemar.2020.49.1.774

Keywords:

probiotic, growth promoter, Bacillus firmus, white shrimp, rotifers.

Abstract

he growing demand for aquaculture protein suggests seeking biotechnological alternatives that improve the cultivation of species of commercial interest. In this study, Bacillus firmus C101 was evaluated as a growth promoter and probiotic potential, which was characterized and subsequently administered (106 CFU mL-1 * day) in post-larvae of white shrimp (Litopenaeus vannamei) and rotifers (Brachionus plicatilis sensu stricto). B. firmus C101 was observed to have the tolerance to bile salts, strong phosphatase activity, and antimicrobial activity against pathogens such as Vibrio alginolyticus and Aeromonas hydrophila, among others. On the other hand, after its administration for three weeks to postlarvae of shrimp, it caused a significant increase (p < 0.05) in the specific growth rate (TEC = 3.8 ± 0.7 % day-1), the increase in daily weight (ADG = 1.5 ± 0.1 mg day-1) and in the feed conversion rate (TCA = 1.5 ± 0.1 %) compared to controls without the addition of this bacterium (sterile PBS). Likewise, the administration of B. firmus C101 (106 CFU mL-1 * day) to rotifers caused an increase in the population growth rate (TC = 20.2 ± 1.5 % day-1), fertility (F = 0.4 ± 0.03 eggs individuals-1) and productivity (R = 16.0 ± 0.7 individuals mL-1 * day) after 48 h of culture. Based on the above and in comparison with other studies, B. firmus C101 is suggested as a probiotic potential and growth promoter in shrimp postlarvae, and as the first report of the effect of its administration in rotifers. However, studies on the possible mechanisms of action are required, as well as tests on a pilot and commercial scale to validate these results and their possible transfer to the productive sector.

Dimensions

PlumX

Visitas

820

Downloads

Download data is not yet available.

References

Abd El-Rhman, A.M., Y.A.E. Khattab and A.M.E. Shalaby. 2009. Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol., 27: 175-180. http://dx.doi.org/10.1016/j.fsi.2009.03.020.

Abd Rahman, A.R., Z.C. Cob, Z. Jamari, A.M. Mohamed, T. Toda and O.H. Ross. 2018. The effects of microalgae as live food for Brachionus plicatilis (Rotifer) in intensive culture system. Trop. Life Sci. Res., 29: 127-138.

Angelakis, E. 2017. Weight gain by gut microbiota manipulation in productive animals. Microb. Pathog., 106: 162-170. http://dx.doi.org/10.1016/j.micpath.2016.11.002.

Bachruddin, M, M. Sholichah, S. Istiqomah and A. Supriyanto. 2018. Effect of probiotic culture water on growth, mortality, and feed conversion ratio of Vanamei shrimp (Litopenaeus vannamei Boone). IOP Conf. Ser. Earth Environ. Sci., 137.

Bajagai, Y.S., A.V. Klieve, P.J. Dart and W.L. Bryden. 2016. Probiotics in animal nutrition: production, impact and regulation. FAO.

Balcázar, J.L., I. de Blas, I. Ruiz-Zarzuela, D. Cunningham, D. Vendrell and J.L. Múzquiz. 2006. The role of probiotics in aquaculture. Vet. Microbiol., 114: 173-186.

Barman, P., S. Raut, S.K. Sen, U. Shaikh and P. Bandyopadhyay. 2017. Effect of a three-component bacterial consortium in white shrimp farming for growth, survival and water quality management. Acta Biologica Szegediensis, 61(1): 35-44.

Bassler, B.L., E.P. Greenberg and A.M. Stevens. 1997. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol., 179: 4043-4045.

Bernal, M.G., R.M. Marrero, Á.I. Campa-Córdova and J.M. Mazón-Suástegui. 2017. Probiotic effect of Streptomyces strains alone or in combination with Bacillus and Lactobacillus in juveniles of the white shrimp Litopenaeus vannamei. Aquac. Int., 25: 927-939.

Bomba, A., R. Nemcová, D. Mudroňová and P. Guba. 2002. The possibilities of potentiating the efficacy of probiotics. Trends Food Sci. Technol., 13: 121-126.

Cabo, M.L., M.A. Murado, M.P. González and L. Pastoriza. 1999. A method for bacteriocin quantification. J. Appl. Microbiol., 87: 907-914.

Castex, M., L. Chim, D. Pham, P. Lemaire, N. Wabete, J.L. Nicolas, P. Schmidely and C. Mariojouls. 2008. Probiotic P. acidilactici application in shrimp Litopenaeus stylirostris culture subject to vibriosis in New Caledonia. Aquaculture, 275: 182-193.

Cisneros, R. 2011. Rendimiento poblacional del rotífero nativo Brachionus sp. “Cayman”, utilizando diferentes enriquecedores. Ecol. Apl., 10: 99-105.

Cisneros, R. 2012. Crecimiento poblacional del rotifero nativo Brachionus sp.“Cayman”, al evaluar diferentes microalgas como alimento. Revista cubana de investigaciones pesqueras, 29(1): 18-23.

Claus, D. 1992. A standardized Gram staining procedure. World J. Microbiol. Biotechnol., 8: 451-452.

Dawood, M.A.O., S. Koshio, M.M. Abdel‐Daim and H. Van Doan. 2018. Probiotic application for sustainable aquaculture. Rev. Aquac., 11(3): 907-924.

Douillet, P.A. 2000. Bacterial additives that consistently enhance rotifer growth under synxenic culture conditions 2. Use of single and multiple bacterial probiotics. Aquaculture, 182: 241-248.

Fao, W.H.O. 2001. Evaluation of health and nutritional properties of probiotics in food, including powder milk with live lactic acid bacteria. Food Agric. Organ. UN World Heal. Organ. Expert Consult. Rep.

Ferreira, G.S., N.C. Bolívar, S.A. Pereira, C. Guertler, F. do N. Vieira, J.L.P. Mouriño and W.Q. Seiffert. 2015. Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture, 448: 273-279.

Flores-Miranda, M.C., A. Luna-González, Á.I. Campa Córdova, J.A. Fierro-Coronado, B.O. Partida-Arangure, J. Pintado and H.A. González-Ocampo. 2012. Isolation and characterization of infectious Vibrio sinaloensis strainsfrom the Pacific shrimp Litopenaeus vannamei (Decapoda: Penaeidae). Rev. Biol. Trop., 60: 567-576.

Gatesoupe, F.J. 1991. The effect of three strains of lactic bacteria on the production rate of rotifers, Brachionus plicatilis, and their dietary value for larval turbot, Scophthalmus maximus. Aquaculture, 96: 335-342.

Gobi, N., B. Vaseeharan, J.C. Chen, R. Rekha, S. Vijayakumar, M. Anjugam and A. Iswarya. 2018. Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol., 74: 501-508. https://doi.org/10.1016/j.fsi.2017.12.066.

Heisterkamp, I.M., A. Schramm, D. de Beer and P. Stief. 2016. Direct nitrous oxide emission from the aquacultured pacific white shrimp (Litopenaeus vannamei). In: Drake H.L. (Ed.). Appl. Environ. Microbiol., 82: 4028 LP-4034.

Hirata, H., O. Murata, S. Yamada, H. Ishitani and M. Wachi. 1998. Probiotic culture of the rotifer Brachionus plicatilis. Hydrobiologia, 387: 495-498.

Hoseinifar, S.H., M. Dadar and E. Ringø. 2017. Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: The functional feed additives scenario. Aquac. Res., 48: 3987-4000.

Jamali, H., A. Imani, D. Abdollahi, R. Roozbehfar and A. Isari. 2015. Use of probiotic Bacillus spp. in Rotifer (Brachionus plicatilis) and Artemia (Artemia urmiana) enrichment: effects on growth and survival of Pacific white shrimp, Litopenaeus vannamei, Larvae. Probiotics Antimicrob. Proteins., 7: 118-125.

Jeeja, P.K., Imelda-Joseph and R. Paul Raj. 2011. Nutritional composition of rotifer (Brachionus plicatilis Muller) cultured using selected natural diets. Indian J. Fish., 58: 59-65. http://he.scribd.com/doc/93625862/Jeeja-et-al-2011.

Kazuń, B. and K. Kazuń. 2014. Probiotics in aquaculture. Med. Veter., 70: 25-28.

Kesarcodi-Watson, A., H. Kaspar, M.J. Lategan and L. Gibson. 2008. Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture, 274: 1-14.

Khochamit, N., S. Siripornadulsil, P. Sukon and W. Siripornadulsil. 2015. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain. Microbiol. Res., 170: 36-50. http://dx.doi.org/10.1016/j.micres.2014.09.004.

Kolanchina, P., P.R. Kumari, T.S. Gnanam, G. John and A. Balasundar. 2017. Performance evaluation of two probiotic species, on the growth, body composition and immune expression in Penaeus monodon. J. Fish. Aquat. Sci., 12: 157-167. http://www.scialert.net/abstract/?doi=jfas.2017.157.167.

Kostopoulou, V. and H. Centre. 2012. The rotifer Brachionus plicatilis: an emerging bio-tool for numerous applications. J. Biol. Res., 17: 97-112.

Kumar, V, S. Roy, D.K. Meena and U.K. Sarkar. 2016. Application of probiotics in shrimp aquaculture: importance, mechanisms of action, and methods of administration. Rev. Fish. Sci. Aquac., 24: 342-368.

Lallès, J.P. and J.P. Suescún. 2014. Intestinal alkaline phosphatase: an enzyme with anti-inflammatory properties. CES Med. Vet. Zootec., 9: 94-103.

Li, E., X. Wang, K. Chen, C. Xu, J.G. Qin and L. Chen. 2017. Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity. Rev. Aquac., 9: 57-75.

Liu, C.H., C.H. Chiu, S.W. Wang and W. Cheng. 2012. Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish Shellfish Immunol., 33: 699-706. http://dx.doi.org/10.1016/j.fsi.2012.06.012.

Liu, W., X.M. Zhang and L.B. Wang. 2010. Digestive enzyme and alkaline phosphatase activities during the early stages of Silurus soldatovi development. Zool. Res., 31: 627-632.

Loka, J., S.M. Sonali, P. Saha, K. Devaraj and K.K. Philipose. 2016. Use of commercial probiotics for the improvement of water quality and rotifer density in outdoor mass culture tanks. Indian J. Fish., 63: 145-149.

López León, P., A. Luna González, R. Escamilla Montes, M.C. Flores-Miranda and J.A. Fierro Coronado. 2016. Isolation and characterization of infectious Vibrio parahaemolyticus, the causative agent of AHPND, from the whiteleg shrimp (Litopenaeus vannamei). Lat. Am. J. Aquat. Res., 44: 470-479.

Luis-Villaseñor, I.E., M.E. Macías-Rodríguez, B. Gómez-Gil, F. Ascencio-Valle and Á.I. Campa-Córdova. 2011. Beneficial effects of four Bacillus strains on the larval cultivation of Litopenaeus vannamei. Aquaculture, 321: 136-144.

Makridis, P., A.J. Fjellheim, J. Skjermo and O. Vadstein. 2000. Control of the bacterial flora of Brachionus plicatilis and Artemia franciscana by incubation in bacterial suspensions. Aquaculture, 185: 207-218.

Membreño, L., S. Morales and E. Martínez. 2014. Crecimiento de camarones blancos. Rev. Cient. UNAN-León., 5: 103-115.

Murillo, I. and L.M. Villamil-Díaz. 2011. Bacillus cereus and Bacillus subtilis used as probiotics in rotifer (Brachionus plicatilis) cultures. J. Aquac. Res. Dev., 1: 1-5. https://www.omicsonline.org/bacillus-cereus-and-bacillus-subtilis-used-as-probiotics-in-rotifer-brachionus-plicatilis-cultures-2155-9546.S1007.php?aid=2309.

Najmi, N., M. Yahyavi and A. Haghshenas. 2018. Effect of enriched rotifer (Brachionus plicatilis) with probiotic lactobacilli on growth, survival and resistance indicators of western white shrimp (Litopenaeus vannamei) larvae. Iran. J. Fish. Sci., 17: 11-20.

Newaj-Fyzul, A., A.H. Al-Harbi and B. Austin. 2014. Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture, 431: 1-11. http://dx.doi.org/10.1016/j.aquaculture.2013.08.026.

Newaj-Fyzul, A. and B. Austin. 2015. Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. J. Fish Dis., 38: 937-955.

Nimrat, S., P. Tanutpongpalin, K. Sritunyalucksana, T. Boonthai and V. Vuthiphandchai. 2013. Enhancement of growth performance, digestive enzyme activities and disease resistance in black tiger shrimp (Penaeus monodon) postlarvae by potential probiotics. Aquac. Int., 21: 655-666.

Nimrat, S., S. Suksawat, T. Boonthai and V. Vuthiphandchai. 2012. Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Vet. Microbiol., 159: 443-450. http://dx.doi.org/10.1016/j.vetmic.2012.04.029.

Pacheco-Vega, J.M., M.A. Cadena-Roa, J.A. Leyva-Flores, O.I. Zavala-Leal, E. Pérez-Bravo and J.M.J. Ruiz-Velazco. 2018. Effect of isolated bacteria and microalgae on the biofloc characteristics in the Pacific white shrimp culture. Aquac. Reports., 11: 24-30.

Planas, M., J.A. Vázquez, J. Marqués, R. Pérez-Lomba, M.P. González and M. Murado. 2004. Enhancement of rotifer (Brachionus plicatilis) growth by using terrestrial lactic acid bacteria. Aquaculture, 240: 313-329.

Qi, Z., K. Dierckens, T. Defoirdt, P. Sorgeloos, N. Boon, Z. Bao and P. Bossier. 2009. Effects of feeding regime and probionts on the diverting microbial communities in rotifer Brachionus culture. Aquac. Int., 17: 303-315.

Raghu, P., M. Rajikkannu, R. Baburajan, A. Deva and R. Nandakumar. 2016. Effect of Bacillus coagulans and B. firmus incorporated probiotic diet on superoxide dismutase activity and catalase activity in Penaeus monodon. World Sci. News., 44: 224-235.

Ran, C., A. Carrias, M.A. Williams, N. Capps, B.C.T. Dan, J.C. Newton, J.W. Kloepper, E.L. Ooi, C.L Browdy, J.S. Terhune and M.R. Liles. 2012. Identification of Bacillus strains for biological control of catfish pathogens. PLoS One 7.

Reddy, S.J., D. Vineela and B.K. Kumar. 2018. Influence of probiotics on growth and development of aquaculture-a review. World J. Pharm. Res., 7: 291-315.

Ringø, E. and S.K. Song. 2016. Application of dietary supplements (synbiotics and probiotics in combination with plant products and β-glucans) in aquaculture. Aquac. Nutr., 22: 4-24.

Ringø, E., R.E. Olsen, T.M. Mayhew and R. Myklebust. 2003. Electron microscopy of the intestinal microflora of fish. Aquaculture, 227: 395-415.

Ringø, E., R. Myklebust, T.M. Mayhew and R.E. Olsen. 2007. Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture, 268: 251-264.

Rollo, A., R. Sulpizio, M. Nardi, S. Silvi, C. Orpianesi, M. Caggiano, A. Cresci and O. Carnevali. 2006. Live microbial feed supplement in aquaculture for improvement of stress tolerance. Fish Physiol. Biochem., 32: 167-177.

Rombaut, G., P. Dhert, J. Vandenberghe, L. Verschuere, P. Sorgeloos and W. Verstraete. 1999. Selection of bacteria enhancing the growth rate of axenically hatched rotifers (Brachionus plicatilis). Aquaculture, 176: 195-207.

Sadat Hoseini Madani, N., T.J. Adorian, H. Ghafari Farsani and S.H. Hoseinifar. 2018. The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of whiteleg shrimp (Litopenaeus vannamei) postlarvae. Aquac. Res., 49: 1926-1933.

Snell, T.W., C.J. Bieberich and R. Fuerst. 1983. The effects of green and blue-green algal diets on the reproductive rate of the rotifer Brachionus plicatilis. Aquaculture, 31: 21-30.

Tang, J., Y. Dai, Y. Li, J. Qin and Y. Wang. 2016. Can application of commercial microbial products improve fish growth and water quality in freshwater polyculture? N. Am. J. Aquac., 78: 154-160.

Valenzuela-González, F., R. Casillas-Hernández and E. Villalpando. 2015. The 16S rRNA gene in the study of marine microbial communities. Ciencias Marinas, 41(4): 297-313.

Vieira, F. do N., A. Jatobá, J.L.P. Mouriño, C.C.B. Neto, J.S. Da Silva, W.Q. Seiffert, M. Soares and L.A. Vinatea. 2016. Use of probiotic-supplemented diet on a Pacific white shrimp farm. Rev. Bras. Zootec., 45: 203-207.

Villamil Díaz, L.M., A. Figueras, M. Planas and B. Novoa. 2010. Pediococcus acidilactici in the culture of turbot (Psetta maxima) larvae: Administration pathways. Aquaculture, 307: 83-88. http://dx.doi.org/10.1016/j.aquaculture.2010.07.004.

Villamil Díaz, L.M. y D. Esguerra Rodríguez. 2017. Enterococcus, Myroides y Exiguobacterium: géneros bacterianos con potencial probiótico para el cultivo de tilapia nilótica (Oreochromis niloticus). Acta Biol. Col., 22: 331-339.

Wang, C., X. Song, X. Zhang, S. Zhang, X. Sun, B. Liu, W. Gao and J. Huang. 2016. Effects of adding Bacillus cereus PC465 to rearing water on disease resistance of Litopenaeus vannamei. J. Fish. Sci. China, 23: 146-155.

Wang, Y. 2007. Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei. Aquaculture, 269: 259-264.

Wang, Y., Y. Sun, X. Zhang, Z. Zhang, J. Song, M. Gui and P. Li. 2015. Bacteriocin-producing probiotics enhance the safety and functionality of sturgeon sausage. Food Control., 50: 729-735. http://dx.doi.org/10.1016/j.foodcont.2014.09.045.

Yi, Y., Z. Zhang, F. Zhao, H. Liu, L. Yu, J. Zha and G. Wang. 2018. Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish Shellfish Immunol., 78: 322-330. https://doi.org/10.1016/j.fsi.2018.04.055.

Yoshimatsu, T. and M.A. Hossain. 2014. Recent advances in the high-density rotifer culture in Japan. Aquac. Int., 22:1587-1603.

Yuniarti, A., D.A. Guntoro and A.M. Hariati. 2013. Response of indigenous Bacillus megaterium supplementation on the growth of Litopenaeus vannamei (Boone), a new target species for shrimp culture in East Java of Indonesia. J. Basic. Appl. Sci. Res., 3: 747-754.

Zhou, X.X., Y.B Wang and W.F. Li. 2009. Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities. Aquaculture, 287: 349-353.

Zink, I.C., P.A. Douillet and D.D. Benetti. 2013. Improvement of rotifer Brachionus plicatilis population growth dynamics with inclusion of Bacillus spp. probiotics. Aquac. Res., 44: 200-211.

Zokaeifar, H., J.L. Balcázar, C.R. Saad, M.S. Kamarudin, K. Sijam, A. Arshad and N. Nejat. 2012. Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol., 33: 683-689.

Zokaeifar, H., N. Babaei, C.R. Saad, M.S. Kamarudin, K. Sijam and J.L. Balcázar. 2014. Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol., 36: 68-74.

Zorriehzahra, M.J., S.T. Delshad, M. Adel, R. Tiwari, K. Karthik, K. Dhama and C.C. Lazado. 2016. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: A review. Vet. Q., 36: 228-241.

Published

2020-07-16 — Updated on 2020-07-16

Versions

How to Cite

1.
Ruiz-Toquica JS, Becerra-Real LM, Villamil Díaz LM. Effect of Bacillus firmus C101 on the growth of Litopenaeus vannamei Boone (White Shrimp) post-larvae, and Brachionus plicatilis s.s. Müller (Rotifer). Bol. Investig. Mar. Costeras [Internet]. 2020 Jul. 16 [cited 2024 Nov. 22];49(1):63-80. Available from: http://boletin.invemar.org.co/ojs/index.php/boletin/article/view/897
سرور مجازی ایران Decentralized Exchange

Issue

Section

Research Articles
فروشگاه اینترنتی