Study of the Lange Glacier and its impact on Climate Change in the Admiralty Bay, King George Island, Antarctica during the Austral Summer 2018 – 2019

Authors

  • Diego Fernando Mojica-Moncada Universidad de Magallanes, Punta Arenas, Chile. Dirección General Marítima, Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe, Cartagena de Indias, Colombia. Programa Antártico Colombiano, Bogotá, Colombia.
  • Carlos Cárdenas Universidad de Magallanes, Punta Arenas, Chile.
  • Jhon Fredy Mojica-Moncada Programa Antártico Colombiano, Bogotá, Colombia. Center for global Sea Level Change, NYUAD, Abu Dhabi, UAE.
  • David Holland Center for global Sea Level Change, NYUAD, Abu Dhabi, UAE.
  • Fabian Brondi Instituto Geográfico Nacional del Perú, Lima, Perú.
  • Cedomir Marangunic Universidad de Magallanes, Punta Arenas, Chile.
  • Dalia C. Barragán-Barrera Dirección General Marítima, Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe, Cartagena de Indias, Colombia. Programa Antártico Colombiano, Bogotá, Colombia.
  • Andrés Franco-Herrera Universidad de Bogotá Jorge Tadeo Lozano
  • Gino Casassa Universidad de Magallanes, Punta Arenas, Chile.

DOI:

https://doi.org/10.25268/bimc.invemar.2021.50.SuplEsp.949

Keywords:

Lange Glacier, Melting, Global Warming, Calving Flux, Antarctica.

Abstract

The Intergovernmental Panel on Climate Change concludes that glaciers are sensitive indicators of climate change. Numerous studies have detected changes in the cryosphere during the last decades, where the thickness of the ice has decreased due to temperature increase, causing melting ice and sea-level rise. Antarctica is one of the greatest areas of interest due to its sensitivity and implications of warming over the cryosphere. Particularly, the Antarctic Peninsula and adjacent islands are areas where the greatest regional warming of the Southern Hemisphere has been identified. We selected the Lange Glacier on King George Island, Antarctica, in order to characterize the implications of Southern warming, from to description its dynamics, glacier front, temperature, melting and calving flux. Three temperature data loggers were installed in bamboo stakes at 200m distance each, and 200m from the north side on the surface of the glacier, which worked by 10 min for 22 days in the austral summer 2018-2019. Additionally, a bathymetric survey and 29 CTD stations were carried out in front of the glacier to determine frontal ice and water conditions. In order to determine the calving flux (QC), we assessed the glacier front using both bathymetric and a digital elevation model (DEM) data, we calculated the glacier front velocity using movement stakes data, and we assessed change in glacier frontal position using DEM and historical data of width glacier front. Our results showed that 85% of the temperatures were above the 0°C melting point, with average records of 5.0 ± 5.2°C. The stakes showed an average thickness of the ice loss of 9.3 ± 1.3cm. The average glacier movement registered by stakes was 8.8 ± 1.5m in the southeast direction equivalent to 0.40 ± 0.70m/day. This movement was corroborated by satellite images of Sentinel-1, which reported an Offset Tracking of 0.43 ± 0.01m/day. Survey bathymetric recorded depths from 10 to 220m, at the front of the glacier, which corresponds to ice thickness below sea level. External waters intrusion to the Lange bay were identified from the oceanographic stations. The external water is warmer than resident waters, destabilizing the water column through convection processes; as a result, the ocean influences the glacier, driving the subsurface glacier retreatment and basal melt. Our findings together indicate a continuous glacier fusion that increases its dynamics due to the increase of temperature, with a contribution of freshwater to the Admiralty Bay. Systematic monitoring is required to establish the direct implications of the LG climate change and water contributions to sea-level rise.

Dimensions

PlumX

Visitas

818

Downloads

Download data is not yet available.

References

Arigony-Neto, J. 2001. Determinação e interpretaçã de características glaciológicas e geográficas com sistema de informações geográficas na Área Antártica Especialmente Gerenciada Baía do Almirantado, Ilha Rei George, Antártica. Porto Alegre, Universidade Federal do Rio Grande do Sul, 84 p. Unpublished M.Sc. dissertation.

Arigony-Neto, J., Simões, J. and Bremer, U. 2004. Implementation of the Admiralty Bay Geographic Information System, King George Island, Antarctica. Pesquisa Antártica Brasileira, Brazilian Antarctic Research. 4:187-190.

Barboza, H., De Bortoli, A., Simoes, J., Da Cunha, R. and Braun, M. 2004. Bidimensional numerical simulation of the Lange Glacier, King George Island, Antarctica: preliminary results. Brazilian Antarctic Research. ISSN 0103-4049 Pesquisa Antártica Brasileira 4: 67-76.

Bennett., M. and Glasser., N. 2009. Glacial Geology: Ice Sheets and Landforms. 2nd. Ed. Wiley-Blackwell Publication. 385 pp.

Benn, D., Warren, C. and Mottram, R. 2007. Calving processes and the dynamics of calving glaciers. Elsevier, Earth-Science Reviews 82: 143-179

Braun, M. 2001. Ablation on the ice CAP OF King George Island (Antarctica) an approach from field measurements, modelling and remote sensing. Doctoral thesis at the Faculty of Earth Sciences, Albert-Ludwigs-Universität Freiburg i. Br. 191 pp.

Braun, M. and Gossmann, H. 2002. Glacial changes in the area of Admiralty Bay and Potter Cove, King George Island, Antarc- tica. In: Beyer, M., Boelter, M. (Eds.), GeoEcology of Ter- restrial Antarctic Oases. Springer Verlag, Berlin-Heidelberg, pp. 75 – 89.

Braun, M. and Hock, R. 2004. Spatially distributed surface energy balance and ablation modelling on the ice cap of King George Island (Antarctica). Elsevier, Global and Planetary Change 42:45-58.

Bindschadler, R.A. and Rasmussen, L.A. 1983. Finite difference model predictions of the drastic retreat of Columbia Glacier, Alaska. United States Geological Survey Professional Paper 1258-D.

Calvet, J., García Sellés, D. y Corbera, J. 1999. Fluctuaciones de la extension del casquete glacial de la Isla Livingston (Shetland del Sur) desde 1956 hasta 1996. Acta Geol. Hispanica 34:365-374.

Departamento Nacional de Planeación. 2012. Plan Nacional de Adaptación al Cambio Climático. Bogotá: DNP. 74 pp.

Ferron, F., Simoes, J., Aquino, F. and Setzer, A. 2004. Air temperature time series for King George Island, Antarctica. Pesquisa Antártica Brasileira (Brazilian Antarctic Research) 4: 155 – 169.

Hansen, J., Ruedy, R., Glascoe, J. and Sato M. 1999. GISS analysis of surface temperature change. J Geophysics Res-Atmos 104:30997– 31022.

Howat, I.M., Porter, C., Smith, B.E., Noh, M.-J. and Morin, P. 2019. The Reference Elevation Model of Antarctica. The Cryosphere 13: 665-674. https://doi.org/10.5194/tc-13-665-2019.

IPCC. 2013. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Climate Change The Physycal Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Pachauri R. K. and Meyer L. A. (eds.). IPCC, Ginebra, Suiza, 157 págs.

Kejna, M., Láska, K. and Caputa, Z. 1998. Recession of the Ecology Glacier (King George Island) in the period1961–1996. In: GlowackiPandBednarekJ. (Eds.), InternationalPolarSymposium,25.,the100th anniversary of Prof. Henry Arctowski’s and Prof. Antoni Boleslaw Dobrowolski’s participation in the Belgica expedition to the Antarctic in 1887–1889. Warsaw: PolishAcademy of Sciences, p. 121–128.

King, J.C. and Harangozo, S.A. 1998. Climate Change in the western Antarctic Península since 1945: observations and possible causes. Ann. Glaciol. 27: 571-575.

Knap, W.H., Oerlemans, J. and Cadée, M. 1996. Climate sensitivity of the ice cap of King George Island, South Shetland Islands, Antarctica. Ann. Glaciol. 23: 154-159.

Lliboutry., L. 1956. Nieves y Glaciares de Chile. Fundamentos de Glaciología. Ediciones de la Universidad de Chile. Santiago de Chile. 471 pp.

Lu, J. and Veci, L. 2016. Sentinel-1 Toolbox. Offset Tracking Tutorial, European Spacial Agency. Array Systems computing INC. http://www.array.ca/ http://step.esa.int

Marangunic., C., Marangunic., P. y González., P. 2008. Manual de Glaciología. Ministerio de Obras Públicas, Dirección General de Aguas. Geoestudios LTDA. Volumen N° 2. 341 pp.

Marshall, GJ., Lagun, V. and Lachlan-Cope, TA. 2002. Changes in Antarctic Península tropospheric temperatures from 1956 to 1999: a synthesis of observations and reanalysis data. Int. J. Climatol. 22: 291-310.

Meredith, M. P. and King, J. C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32(19).

Motyka, R.J., Hunter, L., Echelmeyer, K. and Connor, C. 2003. Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Annals of Glaciology 36, 57– 65.

Park, B.K., Chang, S-K, Yoo, H.I. and Chung, H. 1998. Recent retreat of ice cliffs, King George Island, South Shetland Islands, Antarctic Peninsula. Ann. Glaciol. 27:633-635.

Peel, D.A., Mulvaney, R. and Davison, B.M. 1988. Stable-isotope/air-temperature relationships in ice cores from Dolleman Island and the Palmer Land plateau, Antarctic Peninsula. Ann. Glaciol., 10, 130-136.

Pichlmaier, M., Aquino, FE., Santos da Silva, C. and Braun, M. 2004. Suspended sediments in Admiralty Bay, King George Island (Antarctica). Pesq. Antart. Bras. 4: 77-85.

Raper, SCB., Wigley, JML., Mayes, PR., Jones, PD. and Salinger, MJ. 1984. Variations in surface air temperatures; part 3, the Antarctica, 1957-1982. Mon Weather Rev 112:1341-1353.

Rivera, A., Zamora, R. and Uribe, J. 2018. Recent Glaciological Studies in the Interior of West Antarctica: Discovery of Subglacial “Lake CECs”. ILAIA, advnaces in chilean Antarctic science N° 4. 19 – 21pp.

Rivera, A., Zamora, R., Rada, C., Walton, J. and Proctor, S. 2010. Glaciological investigations on Union Glacier, Ellsworth Mountains, West Antarctica. Annals of Glaciology 51 (55). 91 – 95 pp.

Riveros, N., Euillades, L., Euillades, P., Moreiras, S. and Balbarani, S. 2013. Offset tracking procedure applied to high resolution SAR data on Viedma Glacier, Patagonian Andes, Argentina. Adv. Geosci., 35, 7-13.

Schmitt, R.W. 1994. Double diffusion in oceanography. Woods Hole Oceanographic Institution. Annu. Rev. Fluid Mech, 26:255-285.

Siegert, M.J. and Dowdeswell, J.A. 2004. Numerical reconstructions of the Eurasian Ice Sheet and climate during the Late Weichselian. Quaternary Science Reviews 23, 1273–1283

Sikonia, W.G. 1982. Finite Element Glacier Dynamics Model Applied to Columbia Glacier, Alaska. United States Geological Survey Professional Paper 1258-B.

Simões, J. C., Bremer, U. F., Aquino, F.E. and Ferron, F.A. 1999. Morphology and variations of glacial drainage basins in the King George Island ice field, Antarctica. In: Annals of Glaciology, 29, pp. 220– 224.

Simões, J.C., Bremer, U.F., Dani, N., Aquino, F.E. y Gruber, N.L.S. 1995. Resultados preliminares do programa glaciológico brasileiro. In: Simpósio Nacional de Geografía Aplicada, 6., Goiânia. Anais…, Goiânia, 1995, 2, p. 244-249.

Simoes, J.C., Dani, N., Bremer, U., Aquino, F. and Arigony-Neto, J. 2004. Small cirque glaciers retreat on Keller Peninsula, Admiralty Bay, King George Island, Antarctica. Brazilian Antarctic Research. Pesquisa Antártica Brasileira 4: 49-56. ISSN 0103-4049. 49 – 56 pp.

Tarbuck, E.J., Lutgens,F.K. and Tasa, D. 2005. Earth Sciences an Introduction to Physical Geology. Eighth edition. Pearson Education S.A., Madrid. ISBN Spanish Edition: 84-205-4400-0. 736 pp.

Turner, J., Colwell, S., Marshall, G., Lachlan-Cope, T., Carleton, A., Jones, P., Lagun, V., Reid, P. and Iagovkina, S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology 25: 279 – 294.

Van der Veen, C.J. 2002. Calving glaciers. Progress in Physical Geography 26, 96–122.

Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A. and Turner, J. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic change, 60(3), 243-274.

Vaughan, D.G., Comiso, J.C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E. Solomina, O., Steffen, K. and Zhang, T. 2013. Observations: Cryosphere. In: Climate Change 2013: The Physycal Sciences Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovermental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattener, M., Tignor, S.K. Vieli, A., Jania, J., Kolondra, L. 2002. The retreat of a tidewater glacier: observations and model calculations on Hansbreen, Spitsbergen. Journal of Glaciology 48, 592-600].

Wang, Q., Zhou, W., Fan, J, Yuan, W., Li, H., Sousa, J. and Guo Z. 2017. Estimation of Shie Glacier surface movement using Offset Tracking technique with cosmo-skymed images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4. 493-497.

Published

2021-05-26

How to Cite

1.
Mojica-Moncada DF, Cárdenas C, Mojica-Moncada JF, Holland D, Brondi F, Marangunic C, Barragán-Barrera DC, Franco-Herrera A, Casassa G. Study of the Lange Glacier and its impact on Climate Change in the Admiralty Bay, King George Island, Antarctica during the Austral Summer 2018 – 2019. Bol. Investig. Mar. Costeras [Internet]. 2021 May 26 [cited 2024 Nov. 22];50(SuplEsp):59-84. Available from: http://boletin.invemar.org.co/ojs/index.php/boletin/article/view/949
سرور مجازی ایران Decentralized Exchange

Issue

Section

Research Articles
فروشگاه اینترنتی