Índice de abundancia relativa de la raya volantín entre isla Choros (29° 16’ S) y punta Refugio (42° 10’ S) como una contribución al manejo de su pesquería en Chile
Publicado 2025-01-01
Palabras clave
- Zearaja chilensis,
- GLM,
- Aproximación delta lognormal,
- Índice de abundancia,
- Patrón espacial
Cómo citar
Derechos de autor 2024 Javier Legua
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Resumen
En muchas pesquerías y en particular las de datos limitados, la CPUE no es un buen indicador de la abundancia debido a múltiples factores operacionales que inciden en la variabilidad de la capturabilidad. Con el fin de estimar una señal anual de abundancia CPUE de un
recurso pesquero de datos limitados, analizamos los de la raya volantín (Zearaja chilensis) recopilados como fauna acompañante en las campañas hidroacústicas de merluza común (Merluccius gayi) (1993-2019) frente a Chile centro-sur (29° 10’ S - 42° 10’ S). La información operacional es analizada por medio de Modelos Aditivos Generalizados (GAM) y Modelos Lineales Generalizados (GLM). Los resultados indican que Z. chilensis presenta notables
áreas de densidad y una mayor frecuencia de presencia de esta especie entre 300 y 425 m de profundidad. El modelo de CPUE mostró que la profundidad es el efecto fijo más importante en su variabilidad, mientras el efecto año resultó ser determinante en un modelo binomial de la
proporción de lances positivos. El estudio sugiere que este tipo de índices sean considerados en el manejo de esta pesquería, ya sea en modelos de evaluación de stock, o como índices empíricos para el ajuste anual de las capturas o esfuerzo de pesca.
Descargas
Citas
- Aitchison J. 1955. On the distribution of a positive random variable having a discrete probability mass at the origin. J. Am. Stat. Assoc., 50(271): 901-908. https://doi.org/10.2307/2281175
- Barange M., G. Merino, J.L. Blanchard, J. Scholtens, J. Harle, E.H. Allison, J.I. Allen, J. Holt and S. Jennings. 2014. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change, 4: 211 - 216. https://doi.org/10.1038/nclimate2119
- Belleggia, M., N. Andrada, S. Paglieri, F. Cortés, A. M. Massa, D. E. Figueroa and C. Bremec. 2016. Trophic ecology of yellownose skate Zearaja chilensis, a top predator in the south-western Atlantic Ocean. J. Fish. Biol., 88: 1070-1087. https://doi.org/10.1111/jfb.12878
- Blamey L.K., L.J. Shannon, J.J. Bolton, R.J.M. Crawford, F. Dufois, H. Evers-King, C.L. Griffiths, L. Hutchings, A. Jarre, M. Rouault, K.E. Watermeyer and H. Winker. 2015. Ecosystem change in the southern Benguela and the underlying processes. J. Mar. Syst., 144: 9 - 29. https://doi.org/10.1016/j.jmarsys.2014.11.006
- Brynjarsdóttir, J. and G. Stefánsson. 2004. Analysis of cod catch data from Icelandic grundfish surveys using generalized linear models. Fish. Res., 70: 195-208. https://doi.org/10.1016/j.fishres.2004.08.004
- Bustamante, C., C. Vargas-Caro and M. Bennett. 2014. Biogeographic patterns in the cartilaginous fauna (Pisces: Elasmobranchii and Holocephali) in the southeast Pacific Ocean. Peer J2: e416. https://doi.org/10.7717/peerj.416
- Campbell, R.A. 2004. CPUE standardization and the construction of indices of stock abundance in a spatially varying fishery using general linear models. Fish. Res., 70(2-3): 209-227. https://doi.org/10.1016/j.fishres.2004.08.026
- Campbell, R.A. 2015. Constructing stock abundance indices from catch and effort data: Some nuts and bolts. Fish. Res., (161):109-130. https://doi.org/10.1016/j.fishres.2014.07.004
- Canales, C. and P. Arana. 2010. Catch per swept area (CPUA) standardization in direct assessment cruises of nylon shrimp (Heterocarpus reedi) (1998 - 2006). The t. Am. J. Aquat. Res., 38(3): 387-402. https://doi.org/10.3856/vol38-issue3-fulltext-4
- Carruthers, T., R. Ahrens, M. McAllister and C. Walters. 2011. Integrating imputation and standardization of catch rate data in the calculation of relative abundance indices. Fish. Res., 109 (1): 157-167. https://doi:10.1016/j.fishres.2011.01.033
- Chang, S.-K., H. Liu, H. Fukuda and M.N. Maunder. 2017. Data reconstruction can improve abundance index estimation: an example using Taiwanese longline data for Pacific bluefin tuna. PLoS One, 12(10): e0185784. https://doi.org/10.1371/journal.pone.0185784
- Chen J., M.E. Thompson and Ch. Wu. 2004. Estimation of fish abundance indices based on scientific research trawl surveys. Biometrics, 60 (1): 116 - 123. https://doi.org/10.1111/j.0006-341X.2004.00162.x
- Cochrane, K.L. (ed.). 2002. A fishery manager's Guidebook. FAO Fish. Tech.Pap. 424. 231 pp
- Cordo, H. 2010. Comparación de tres métodos para estimar la abundancia media de abadejo (Genypterus blacodes) con datos de campañas de investigación realizadas entre 1995 y 2009.. Inst. Nal. Invest. Des. (INIDEP), Argentina, 19 p. https://www.researchgate.net/publication/282097153_Comparacion_de_tres_metodos_para_estimar_la_abundancia_media_de_abadejo_Genypterus_blacodes_con_datos_de_campanas_de_investigacion_realizadas_entre_1995_y_2009
- Faraway, J.J. 2006. Extending the linear model with R. Generalized linear, mixed effects and nonparametric regression models. Boca Raton, U.S.A., Chapman and Hall/CRC. 345 p.
- Finley, A., S. Banerjee, Ø. Hjelle and R. Bivand. 2017. MBA: Multilevel B-Spline Approximation.7pp. https://cran.r-project.org/web/packages/MBA/MBA.pdf
- Goñi, R., F. Álvarez and S. Adlerstein. 1999. Application of generalized linear modeling to catch rate analysis of Western Mediterranean fisheries: The Castellon trawl fleet as a case study. Fish Res., 42 (3): 291- 302. https://doi.org/10.1016/S0165-7836(99)00039-9
- Hansen, J., A. Aubone and O. Wöhler. 2003. A review of two methods for biomass assessment of long tail hake from the south western Atlantic (45°-55° S) based on swept area data. Marit. Front., 19 (B): 133-144. https://ctmfm.org/wp-content/uploads/2021/08/Hansen-et-al-2.pdf
- Hansen, J.E, N. Hozbor, N. Lagos y P. Martos. 2009. Precisión en las evaluaciones por área barrida de algunos peces demersales costeros entre los 34º S Y 42º S, Atlántico Sudoccidental. Inf. Técn., 78. Inidep, 40 p. https://marabierto.inidep.edu.ar/handle/inidep/151
- Hilborn, R. and J. W. Walters. 1992. Quantitative fisheries stock assessment. Chapman and Hall, New York, 570 p.
- Hinton, M. G. and M. N. Maunder.2004. Methods for standardizing CPUE and how to select among them. Col. Vol. Sci. Pap. ICCAT, 56(1), 169-177.
- Horn, P.L. 2003. CPUE from commercial fisheries for ling (Genypterus blacodes) around the North Island, New Zealand: an evaluation of series for LIN 1, LIN 2, and Cook Strait. NZ Fisheries Association Report, 13, 49 pages.
- https://fs.fish.govt.nz/Doc/17363/2003%20FARs/03_13_FAR.pdf.ashx
- Ingram, G.W., W.J. Richards, C.E. Porch, V. Restrepo, J.T. Lamkin, B. Muhling, J. Lyczkowski-Shultz, G.P. Scott and S.C. Turner. 2008. Annual indices of bluefin tuna (Thunnus thynnus) spawning biomass in the Gulf of Mexico developed using delta-lognormal and multivariate models. Iccat working document scrs/2008/086. 33 p.
- Lamilla J., J. Ovanden, C. Bustamante, C. Vargas-Caro, M. Bennett, T. Ponce, A. Isla y C. Barria. 2016. Unidades poblacionales de raya volantín (Zearaja chilensis) y raya espinosa (Diptirus trachyderma) entre la V y XII Regiones. FIP 2013 -29. Univ. Austral Chile, Univ. Queensland, Australia. 419 p. (anexos incluidos). https://www.subpesca.cl/fipa/613/articles-89346_informe_final.pdf
- Large, PA 1992. Use of multiplicative model to estimate relative abundance from commercial CPUE data. ICES J. Mar. Sci., 49(3): 253-261. https://doi.org/10.1093/icesjms/49.3.253
- Lillo S., J. Legua, J. Olivares, J.C. Saavedra, E. Molina, M. Rojas, E. Díaz, J. Angulo, V. Valenzuela, S. Núñez, S. Vásquez y R. Luna. 2017. Evaluación directa de merluza común, año 2016. Inf. Final, ASIPA, 320 p.
- http://190.151.20.106/exlibris/aleph/a23_1/apache_media/9TLQIKXKIHDM3P5XSUPJ5328GRS2CR.pdf
- Lynch P., K. Shertzer and R. Latour. 2012. Performance of methods used to estimate indices of abundance for highly migratory species. Fish. Res., 125-126. https://doi.org/10.1016/j.fishres.2012.02.005
- Maunder, M. N. and A. E. Punt. 2004. Standardizing catch and effort data: a review of recent approaches. Fish. Res., 70 (2-3): 141 - 159. https://doi.org/10.1016/j.fishres.2004.08.002
- McCullagh, P. and J.A. Nelder. 1989. Generalized linear models. Chapman and Hall, New York, 511 p.
- Molina, E., J. Olivares, E. Díaz, M. Rojas, J. Angulo, F. Osorio, J. Bonicelli, S. Hormazábal, M. Cornejo, A. Murillo, N. Silva, J. Bento, M. Fernández, P. Muñoz, E. Sagardia, J. Fernández, D. Donoso y B. Leiva. 2020. Evaluación directa de merluza común, año 2019. Inf. Final. ASIPA. 312 p.
- http://190.151.20.106/exlibris/aleph/a23_1/apache_media/8LJHSV56U3XPFXB4XE6RFTQPKQYPXY.pdf
- Nychka, D., R. Furrer, J. Paige, S. Saint, F. Gerber and M. Iverson. 2021. fields: Tools for spatial data. 223 p. https://cran.r-project.org/web/packages/fields/fields.pdf
- Ortega-Cisneros, K., S. Yokwana, W. Sauer, K. Cochrane, A. Cockcroft, N. C. James, W. M. Potts, L. Singh, M. Smale, A. Wood and G. Pecl, 2018. Assessment of the likely sensitivity to climate change for the key marine species in the southern Benguela system. Afr. J. Mar. Sci., 40: 279–292. https://doi.org/10.2989/1814232X.2018.1512526
- Paesch, L. 2018. Índices de abundancia para Mustelus schmitti, Squatina guggenheim y Zearaja chilensis en la Zona Común de Pesca Argentino-Uruguaya. Direc. Nal. Rec. Acuát. (DINARA), MinGanadería, Agricultura Pesca Uruguay. Inf. Téc. 56, 31 p. http://hdl.handle.net/1834/41403
- Pecl G.T., M.B. Araújo, J.D. Bell, J. Blanchard, T.C. Bonebrake, I-C. Chen, T.D. Clark, R.K. Colwell, F. Danielsen, B. Evengård, L. Falconi, S. Ferrier, S. Frusher, R.A. García, R.B. Griffis, A.J. Hobday, C. Janion-Scheepers, M.A. Jarzyna, S. Jennings, J. Lenoir, H.I. Linnetved, V.Y. Martin, P.C. McCormack, J. McDonald, N.J. Mitchell, T. Mustonen, J.M. Pandolfi, N. Pettorelli, E. Popova, S.A. Robinson, B.R. Scheffers, J.D. Shaw, C.J.B. Sorte, J.M. Strugnell, J.M. Sunday, M. -N. Tuanmu, A. Vergés, C. Villanuev, T. Wernberg, E. Wapstra and S.E. Williams. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214. https://doi.org/10.1126/science.aai9214
- Pennington, M. 1983. Efficient estimators of abundance, for fish and plankton surveys. Biometrics, 39 (1): 281 - 286. https://doi.org/10.2307/2530830
- Pérez, M. 2019. Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales, 2020. Raya volantín regional. Informe convenio de desempeño 2019. IFOP. 61 pp + anexos.
- Punt, A.E, T.I. Walker, B. L. Taylor and F. Pri-Bac. 2000. Standardization of catch and data effort in a spatially-structured shark fishery. Fish. Res., 45 (2): 129-145.
- https://doi.org/10.1016/S0165-7836(99)00106-X
- R Core Team. 2020. A: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
- Ruarte, C., M.R. Rico y Á. Lagos. 2017. Estimación de índices de abundancia de peces óseos a partir de datos de campañas de investigación en el área de “El Rincón”, Argentina (39° s-41° s). período 1994-2012. Inf. Téc., 98, 53 p.
- <https://aquadocs.org/bitstream/handle/1834/10990/INIDEPIT98.pdf?sequence=1&isAllowed=y>
- Setyadji B. and Z. Fahmi. 2020. A standardized abundance index from fishery independent data: A case study of swordfish (Xiphias gladius) from Indonesian tuna longline fishery. E3S Web of Conferences 147, 02016. https://doi.org/10.1051/e3sconf/202014702016
- Stefánsson, G. 1996. Analysis of groundfish survey abundance data: combining the GLM and delta approaches. ICES J. of Mar. Sci. 53(3): 577 - 588. https://doi.org/10.1006/jmsc.1996.0079
- Thorson, J., A. Shelton, E. Ward and H. Skaug. 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. of Mar. Sci., 72(5), 1297-1310. https://doi.org/10.1093/icesjms/fsu243
- Woillez, M., J.C. Poulard, J. Rivoirard, P. Petitgas and N. Bez. 2007. Indices for capturing spatial patterns and their evolution in time, with application to European hake (Merluccius merluccius) in the Bay of Biscay. ICES J. of Mar. Sci., 64 (3): 537 – 55. https://doi.org/10.1093/icesjms/fsm025
- Ye, Y. and D. Dennis. 2009. How reliable are the abundance indices derived from commercial catch-effort standardization?. Dog. J. Fish Aquat. Sci. 66: 1169 – 1178. https://doi.org/10.1139/F09-070
- Ye, Y., M. Al-Husaini and A. Al-Baz. 2001. Use of generalized linear models to analyze catch rates having zero values: the Kuwait driftnet fishery. Fish. Res., 53(2): https://doi.org/10.1016/S0165-7836(00)00287-3
- Wood, S. 2021. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. 323 pages https://cran.r-project.org/web/packages/mgcv/mgcv.pdf