Vol. 54 No. 1 (2025)
Research Articles

Relative abundance index of yellownose skate between Chile’s Isla Choros (29° 16’ S) and Punta Refugio (42° 10’ S) as a contribution to its stock management

Javier Legua
Instituto de fomento Pesquero
Cristian Canales Ramírez
Pontificia Universidad Católica de Valparaíso, Laboratorio de Dinámica de Poblaciones Marinas y Modelamiento Estadístico (Dimare), Valparaíso, Chile.
Luis La Cruz Aparco
Instituto de Fomento Pesquero, Departamento de Evaluaciones Directas, Blanco 839, Valparaíso, Chile.

Published 2025-01-01

Keywords

  • Zearaja chilensis,
  • GLM,
  • Lognormal delta approximation,
  • Abundance index,
  • Spatial pattern

How to Cite

1.
Legua J, Canales Ramírez C, La Cruz Aparco L. Relative abundance index of yellownose skate between Chile’s Isla Choros (29° 16’ S) and Punta Refugio (42° 10’ S) as a contribution to its stock management. Bol. Investig. Mar. Costeras [Internet]. 2025 Jan. 1 [cited 2025 Jan. 8];54(1):71-92. Available from: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1305

Abstract

In many fisheries, particularly those with limited data, CPUE is not a good indicator of abundance due to multiple operational factors that influence variability in catchability. In order to estimate an annual CPUE abundance signal of a data-limited fishery resource, in this paper we analyze the yellownose skate (Zearaja chilensis) accompanying fauna data collected in the common hake (Merluccius gayi) hydroacoustic surveys (1993-2019) off south-central Chile
(29° 10’ S - 42° 10’ S). Operational information is analyzed by means of Generalized Additive Models (GAM) and Generalized Linear Models (GLM). The results indicate that Z. chilensis presents notable density zones and a higher frequency of presence of this species between 300 m and 425 m depth. The CPUE model showed that depth is the most important fixed effect in its variability, while the year effect proved to be determinant in a binomial model of
the proportion of positive hauls. The study suggests that this type of indices be considered in the management of this fishery, either in stock assessment models, or as empirical indices for the annual adjustment of catches or fishing effort. effort.

Downloads

Download data is not yet available.

References

  1. Aitchison J. 1955. On the distribution of a positive random variable having a discrete probability mass at the origin. J. Am. Stat. Assoc., 50(271): 901-908. https://doi.org/10.2307/2281175
  2. Barange M., G. Merino, J.L. Blanchard, J. Scholtens, J. Harle, E.H. Allison, J.I. Allen, J. Holt and S. Jennings. 2014. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change, 4: 211 - 216. https://doi.org/10.1038/nclimate2119
  3. Belleggia, M., N. Andrada, S. Paglieri, F. Cortés, A. M. Massa, D. E. Figueroa and C. Bremec. 2016. Trophic ecology of yellownose skate Zearaja chilensis, a top predator in the south-western Atlantic Ocean. J. Fish. Biol., 88: 1070-1087. https://doi.org/10.1111/jfb.12878
  4. Blamey L.K., L.J. Shannon, J.J. Bolton, R.J.M. Crawford, F. Dufois, H. Evers-King, C.L. Griffiths, L. Hutchings, A. Jarre, M. Rouault, K.E. Watermeyer and H. Winker. 2015. Ecosystem change in the southern Benguela and the underlying processes. J. Mar. Syst., 144: 9 - 29. https://doi.org/10.1016/j.jmarsys.2014.11.006
  5. Brynjarsdóttir, J. and G. Stefánsson. 2004. Analysis of cod catch data from Icelandic grundfish surveys using generalized linear models. Fish. Res., 70: 195-208. https://doi.org/10.1016/j.fishres.2004.08.004
  6. Bustamante, C., C. Vargas-Caro and M. Bennett. 2014. Biogeographic patterns in the cartilaginous fauna (Pisces: Elasmobranchii and Holocephali) in the southeast Pacific Ocean. Peer J2: e416. https://doi.org/10.7717/peerj.416
  7. Campbell, R.A. 2004. CPUE standardization and the construction of indices of stock abundance in a spatially varying fishery using general linear models. Fish. Res., 70(2-3): 209-227. https://doi.org/10.1016/j.fishres.2004.08.026
  8. Campbell, R.A. 2015. Constructing stock abundance indices from catch and effort data: Some nuts and bolts. Fish. Res., (161):109-130. https://doi.org/10.1016/j.fishres.2014.07.004
  9. Canales, C. and P. Arana. 2010. Catch per swept area (CPUA) standardization in direct assessment cruises of nylon shrimp (Heterocarpus reedi) (1998 - 2006). The t. Am. J. Aquat. Res., 38(3): 387-402. https://doi.org/10.3856/vol38-issue3-fulltext-4
  10. Carruthers, T., R. Ahrens, M. McAllister and C. Walters. 2011. Integrating imputation and standardization of catch rate data in the calculation of relative abundance indices. Fish. Res., 109 (1): 157-167. https://doi:10.1016/j.fishres.2011.01.033
  11. Chang, S.-K., H. Liu, H. Fukuda and M.N. Maunder. 2017. Data reconstruction can improve abundance index estimation: an example using Taiwanese longline data for Pacific bluefin tuna. PLoS One, 12(10): e0185784. https://doi.org/10.1371/journal.pone.0185784
  12. Chen J., M.E. Thompson and Ch. Wu. 2004. Estimation of fish abundance indices based on scientific research trawl surveys. Biometrics, 60 (1): 116 - 123. https://doi.org/10.1111/j.0006-341X.2004.00162.x
  13. Cochrane, K.L. (ed.). 2002. A fishery manager's Guidebook. FAO Fish. Tech.Pap. 424. 231 pp
  14. Cordo, H. 2010. Comparación de tres métodos para estimar la abundancia media de abadejo (Genypterus blacodes) con datos de campañas de investigación realizadas entre 1995 y 2009.. Inst. Nal. Invest. Des. (INIDEP), Argentina, 19 p. https://www.researchgate.net/publication/282097153_Comparacion_de_tres_metodos_para_estimar_la_abundancia_media_de_abadejo_Genypterus_blacodes_con_datos_de_campanas_de_investigacion_realizadas_entre_1995_y_2009
  15. Faraway, J.J. 2006. Extending the linear model with R. Generalized linear, mixed effects and nonparametric regression models. Boca Raton, U.S.A., Chapman and Hall/CRC. 345 p.
  16. Finley, A., S. Banerjee, Ø. Hjelle and R. Bivand. 2017. MBA: Multilevel B-Spline Approximation.7pp. https://cran.r-project.org/web/packages/MBA/MBA.pdf
  17. Goñi, R., F. Álvarez and S. Adlerstein. 1999. Application of generalized linear modeling to catch rate analysis of Western Mediterranean fisheries: The Castellon trawl fleet as a case study. Fish Res., 42 (3): 291- 302. https://doi.org/10.1016/S0165-7836(99)00039-9
  18. Hansen, J., A. Aubone and O. Wöhler. 2003. A review of two methods for biomass assessment of long tail hake from the south western Atlantic (45°-55° S) based on swept area data. Marit. Front., 19 (B): 133-144. https://ctmfm.org/wp-content/uploads/2021/08/Hansen-et-al-2.pdf
  19. Hansen, J.E, N. Hozbor, N. Lagos y P. Martos. 2009. Precisión en las evaluaciones por área barrida de algunos peces demersales costeros entre los 34º S Y 42º S, Atlántico Sudoccidental. Inf. Técn., 78. Inidep, 40 p. https://marabierto.inidep.edu.ar/handle/inidep/151
  20. Hilborn, R. and J. W. Walters. 1992. Quantitative fisheries stock assessment. Chapman and Hall, New York, 570 p.
  21. Hinton, M. G. and M. N. Maunder.2004. Methods for standardizing CPUE and how to select among them. Col. Vol. Sci. Pap. ICCAT, 56(1), 169-177.
  22. Horn, P.L. 2003. CPUE from commercial fisheries for ling (Genypterus blacodes) around the North Island, New Zealand: an evaluation of series for LIN 1, LIN 2, and Cook Strait. NZ Fisheries Association Report, 13, 49 pages.
  23. https://fs.fish.govt.nz/Doc/17363/2003%20FARs/03_13_FAR.pdf.ashx
  24. Ingram, G.W., W.J. Richards, C.E. Porch, V. Restrepo, J.T. Lamkin, B. Muhling, J. Lyczkowski-Shultz, G.P. Scott and S.C. Turner. 2008. Annual indices of bluefin tuna (Thunnus thynnus) spawning biomass in the Gulf of Mexico developed using delta-lognormal and multivariate models. Iccat working document scrs/2008/086. 33 p.
  25. Lamilla J., J. Ovanden, C. Bustamante, C. Vargas-Caro, M. Bennett, T. Ponce, A. Isla y C. Barria. 2016. Unidades poblacionales de raya volantín (Zearaja chilensis) y raya espinosa (Diptirus trachyderma) entre la V y XII Regiones. FIP 2013 -29. Univ. Austral Chile, Univ. Queensland, Australia. 419 p. (anexos incluidos). https://www.subpesca.cl/fipa/613/articles-89346_informe_final.pdf
  26. Large, PA 1992. Use of multiplicative model to estimate relative abundance from commercial CPUE data. ICES J. Mar. Sci., 49(3): 253-261. https://doi.org/10.1093/icesjms/49.3.253
  27. Lillo S., J. Legua, J. Olivares, J.C. Saavedra, E. Molina, M. Rojas, E. Díaz, J. Angulo, V. Valenzuela, S. Núñez, S. Vásquez y R. Luna. 2017. Evaluación directa de merluza común, año 2016. Inf. Final, ASIPA, 320 p.
  28. http://190.151.20.106/exlibris/aleph/a23_1/apache_media/9TLQIKXKIHDM3P5XSUPJ5328GRS2CR.pdf
  29. Lynch P., K. Shertzer and R. Latour. 2012. Performance of methods used to estimate indices of abundance for highly migratory species. Fish. Res., 125-126. https://doi.org/10.1016/j.fishres.2012.02.005
  30. Maunder, M. N. and A. E. Punt. 2004. Standardizing catch and effort data: a review of recent approaches. Fish. Res., 70 (2-3): 141 - 159. https://doi.org/10.1016/j.fishres.2004.08.002
  31. McCullagh, P. and J.A. Nelder. 1989. Generalized linear models. Chapman and Hall, New York, 511 p.
  32. Molina, E., J. Olivares, E. Díaz, M. Rojas, J. Angulo, F. Osorio, J. Bonicelli, S. Hormazábal, M. Cornejo, A. Murillo, N. Silva, J. Bento, M. Fernández, P. Muñoz, E. Sagardia, J. Fernández, D. Donoso y B. Leiva. 2020. Evaluación directa de merluza común, año 2019. Inf. Final. ASIPA. 312 p.
  33. http://190.151.20.106/exlibris/aleph/a23_1/apache_media/8LJHSV56U3XPFXB4XE6RFTQPKQYPXY.pdf
  34. Nychka, D., R. Furrer, J. Paige, S. Saint, F. Gerber and M. Iverson. 2021. fields: Tools for spatial data. 223 p. https://cran.r-project.org/web/packages/fields/fields.pdf
  35. Ortega-Cisneros, K., S. Yokwana, W. Sauer, K. Cochrane, A. Cockcroft, N. C. James, W. M. Potts, L. Singh, M. Smale, A. Wood and G. Pecl, 2018. Assessment of the likely sensitivity to climate change for the key marine species in the southern Benguela system. Afr. J. Mar. Sci., 40: 279–292. https://doi.org/10.2989/1814232X.2018.1512526
  36. Paesch, L. 2018. Índices de abundancia para Mustelus schmitti, Squatina guggenheim y Zearaja chilensis en la Zona Común de Pesca Argentino-Uruguaya. Direc. Nal. Rec. Acuát. (DINARA), MinGanadería, Agricultura Pesca Uruguay. Inf. Téc. 56, 31 p. http://hdl.handle.net/1834/41403
  37. Pecl G.T., M.B. Araújo, J.D. Bell, J. Blanchard, T.C. Bonebrake, I-C. Chen, T.D. Clark, R.K. Colwell, F. Danielsen, B. Evengård, L. Falconi, S. Ferrier, S. Frusher, R.A. García, R.B. Griffis, A.J. Hobday, C. Janion-Scheepers, M.A. Jarzyna, S. Jennings, J. Lenoir, H.I. Linnetved, V.Y. Martin, P.C. McCormack, J. McDonald, N.J. Mitchell, T. Mustonen, J.M. Pandolfi, N. Pettorelli, E. Popova, S.A. Robinson, B.R. Scheffers, J.D. Shaw, C.J.B. Sorte, J.M. Strugnell, J.M. Sunday, M. -N. Tuanmu, A. Vergés, C. Villanuev, T. Wernberg, E. Wapstra and S.E. Williams. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214. https://doi.org/10.1126/science.aai9214
  38. Pennington, M. 1983. Efficient estimators of abundance, for fish and plankton surveys. Biometrics, 39 (1): 281 - 286. https://doi.org/10.2307/2530830
  39. Pérez, M. 2019. Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales, 2020. Raya volantín regional. Informe convenio de desempeño 2019. IFOP. 61 pp + anexos.
  40. Punt, A.E, T.I. Walker, B. L. Taylor and F. Pri-Bac. 2000. Standardization of catch and data effort in a spatially-structured shark fishery. Fish. Res., 45 (2): 129-145.
  41. https://doi.org/10.1016/S0165-7836(99)00106-X
  42. R Core Team. 2020. A: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
  43. Ruarte, C., M.R. Rico y Á. Lagos. 2017. Estimación de índices de abundancia de peces óseos a partir de datos de campañas de investigación en el área de “El Rincón”, Argentina (39° s-41° s). período 1994-2012. Inf. Téc., 98, 53 p.
  44. <https://aquadocs.org/bitstream/handle/1834/10990/INIDEPIT98.pdf?sequence=1&isAllowed=y>
  45. Setyadji B. and Z. Fahmi. 2020. A standardized abundance index from fishery independent data: A case study of swordfish (Xiphias gladius) from Indonesian tuna longline fishery. E3S Web of Conferences 147, 02016. https://doi.org/10.1051/e3sconf/202014702016
  46. Stefánsson, G. 1996. Analysis of groundfish survey abundance data: combining the GLM and delta approaches. ICES J. of Mar. Sci. 53(3): 577 - 588. https://doi.org/10.1006/jmsc.1996.0079
  47. Thorson, J., A. Shelton, E. Ward and H. Skaug. 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. of Mar. Sci., 72(5), 1297-1310. https://doi.org/10.1093/icesjms/fsu243
  48. Woillez, M., J.C. Poulard, J. Rivoirard, P. Petitgas and N. Bez. 2007. Indices for capturing spatial patterns and their evolution in time, with application to European hake (Merluccius merluccius) in the Bay of Biscay. ICES J. of Mar. Sci., 64 (3): 537 – 55. https://doi.org/10.1093/icesjms/fsm025
  49. Ye, Y. and D. Dennis. 2009. How reliable are the abundance indices derived from commercial catch-effort standardization?. Dog. J. Fish Aquat. Sci. 66: 1169 – 1178. https://doi.org/10.1139/F09-070
  50. Ye, Y., M. Al-Husaini and A. Al-Baz. 2001. Use of generalized linear models to analyze catch rates having zero values: the Kuwait driftnet fishery. Fish. Res., 53(2): https://doi.org/10.1016/S0165-7836(00)00287-3
  51. Wood, S. 2021. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. 323 pages https://cran.r-project.org/web/packages/mgcv/mgcv.pdf