Vol. 54 Núm. 1 (2025)
Articulos de investigación

Mediciones de la Fuerza de Blanco Ex Situ del pez espejo Selene peruviana : Ex Situ Target Strength Measurements of peruvian moonfish Selene peruviana

Naldi Susana Herrera Almirón
Investigadora Instituto del Mar del Peru
Luis La Cruz
Instituto de Fomento Pesquero
Mariano Gutierrez
Instituto Humboldt de Investigacion Marina y Acuicola

Publicado 2025-01-01

Palabras clave

  • Administración pesquera,
  • Ambiente Marino

Cómo citar

1.
Herrera Almirón NS, La Cruz L, Gutierrez M. Mediciones de la Fuerza de Blanco Ex Situ del pez espejo Selene peruviana : Ex Situ Target Strength Measurements of peruvian moonfish Selene peruviana. Bol. Investig. Mar. Costeras [Internet]. 1 de enero de 2025 [citado 5 de febrero de 2025];54(1). Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1319

Resumen

Las mediciones de la fuerza de blanco (TS, Target Strength) son fundamentales para estimar la distribución y abundancia de los recursos hidrobiológicos en evaluaciones hidroacústicas. En este estudio, se realizaron mediciones de TS ex situ de la especie pez espejo Selene peruviana en la zona norte del Perú, frente a la playa Los Órganos durante el otoño de 2015. El objetivo principal fue establecer una relación logarítmica lineal entre la longitud total (LT, cm) del pez espejo y la energía acústica retrodispersada (TS, dB re 1 m2), utilizando un ecosonda científica de haz dividido Simrad EK60 de 120 kHz. El valor experimental del TS ex situ promedio del pez espejo para ejemplares entre 10.9 y 17.6 cm con una longitud promedio de 13.77 cm fue -48.96 dB, con un intervalo de confianza del 95% entre -50.10 y -48.06 dB. El modelo para la relación entre TS-Longitud fue TS120 kHz = 20 * Log10(L, cm) – 71.74 dB. Estos resultandos son de gran relevancia tanto para ecólogos especializados en peces como para administradores e investigadores de recursos pesqueros. Por lo tanto, es crucial realizar un análisis más exhaustivo, incluyendo un mayor número de especies de peces costeros en este tipo de estudios.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Ahmad, W. M. A. W., Ghazali, F. M. M., and Yaqoob, M. A. 2023. Basic Statistical Analysis Using RStudio Software. Penerbit USM.
  2. Bakhtiar, D., Jaya, I., Manik, H. M., and Madduppa, H. H. 2021. KARAKTERISTIK HAMBUR BALIK AKUSTIK PADA IKAN KAKAKTUA (Chlorurus sordidus) MELALUI PENGUKURAN SECARA EX-SITU DENGAN METODE AKUSTIK. Saintek Perikanan : Indonesian Journal of Fisheries Science and Technology, 17(4), 271–278. https://doi.org/10.14710/ijfst.17.4.271-278
  3. Castillo, R., Ñiquen, M., La Cruz, L., Guevara-Carrasco, R., y Cuadros, G. 2021. Migration behavior of anchoveta (Engraulis ringens) in the Northern Humboldt Current System between September 2019 and September 2020. Latin american journal of aquatic research, 49(5), 702–716.
  4. Castillo, R., Peña, C., Grados, D., La Cruz, L., Valdez, C., Pozada-Herrera, M., y Cornejo, R. 2022. Characteristics of anchoveta (Engraulis ringens) schools in the optimum zone and the physiological stress zone of its distribution between 2011 and 2021. Fisheries Oceanography, 31(5), 510–523.
  5. Castillo, R., Peraltilla, S., Aliaga, A., Flores, M., Ballón, M., Calderón, J., y Gutiérrez, M. 2009. Protocolo técnico para la evaluación acústica de las áreas de distribución y abundancia de recursos pelágicos en el mar peruano. Versión 2009.
  6. Costa, B., Taylor, J. C., Kracker, L., Battista, T., and Pittman, S. 2014. Mapping reef fish and the seascape: Using acoustics and spatial modeling to guide coastal management. PloS one, 9(1), e85555.
  7. Cuadros, G., Castillo, R., La Cruz, L., Valdez, C., Peña, C., Chacón, G., Escudero, L., y Salcedo, J. 2024. Variabilidad de la anchoveta (Engraulis ringens) entre febrero y junio en la zona restringida a la pesca industrial en el inicio la primera temporada de pesca del 2022. Boletín de Investigaciones Marinas y Costeras, 53(1), 145–166.
  8. Demer, D. A., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., Domokos, R., Dunford, A., Fassler, S., Gauthier, S., and others. 2015. Calibration of acoustic instruments.
  9. Ehrenberg, J. E., and Torkelson, T. C. 1996. Application of dual-beam and split-beam target tracking in fisheries acoustics. ICES Journal of Marine Science, 53(2), 329–334. https://doi.org/10.1006/jmsc.1996.0044
  10. Espino-Barr, E., Cabral, E., García-Boa, A., y Puente-Gómez, M. 2004. Especies marinas con valor comercial de la costa de Jalisco, México.
  11. Estrella, C., Guevara-Carrasco, R., Avila, W., Palacios, J., y Medina, A. 2000. Informe estadístico de los recursos hidrobiológicos de la pesca artesanal por especies, artes, meses y caletas durante el segundo semestre de 1999.
  12. Fischer, L. G., Pereira, L. E. D., and Vieira, J. P. 2004. Peixes estuarinos e costeiros.
  13. Fischer, W. 1995. Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Vertebrados, 647–1813.
  14. Foote, K. G., Knudsen, H. P., Vestnes, G., MacLennan, D., and Simmonds, E. 1987. Calibration of acoustic instruments for fish density estimation: A practical guide. ICES Cooperative Research Reports (CRR).
  15. Froese, R., and Pauly, D. 2019. FishBase. Selene peruviana (Guichenot, 1866).
  16. Ganoza, F., Gonzales, R., Ramírez, A., Pinto, E., y Pumachagua, E. 2021. Vulnerabilidad de los recursos hidrobiológicos durante el Niño Costero 2017 en zonas de la Región Lima.
  17. Grabowski, T. B., Boswell, K. M., McAdam, B. J., Wells, R. D., and Marteinsdóttir, G. 2012. Characterization of Atlantic cod spawning habitat and behavior in Icelandic coastal waters. PLoS One, 7(12), e51321.
  18. Gutiérrez, M., y Herrera, N. 1998. Mediciones in situ de TS de diversas especies a finales del invierno de 1998. Crucero BIC Humboldt 9808-09.
  19. Harrison, L.-M. K., Cox, M. J., Skaret, G., and Harcourt, R. 2015. The R package EchoviewR for automated processing of active acoustic data using Echoview. Frontiers in Marine Science, 2, 15.
  20. Haslett, R. 1969. The target strengths of fish. Journal of Sound and Vibration, 9(2), 181–191.
  21. Jaksic, F. M., y Castro, S. A. 2010. Ecología y biodiversidad de vertebrados de Chile: Análisis comentado de la Zoología de Claude Gay. Revista chilena de historia natural, 83(3), 323–333.
  22. Jiménez, P., y Béarez, P. 2004. Peces marinos del Ecuador continental Volumen 2.
  23. Kang, D., Cho, S., Lee, C., Myoung, J.-G., and Na, J. 2009. Ex situ target-strength measurements of Japanese anchovy (Engraulis japonicus) in the coastal Northwest Pacific. ICES Journal of Marine Science, 66(6), 1219–1224.
  24. Kang, M. 2006. Current technology of fisheries acoustics based on analyzed acoustic data using SonarData’s Echoview. 2006, 493–497.
  25. Kronthaler, F., Zöllner, S., Kronthaler, F., and Zöllner, S. 2021. Testing Normal Distribution with RStudio. Data Analysis with RStudio: An Easygoing Introduction, 59–63.
  26. Ladroit, Y., Escobar-Flores, P. C., Schimel, A. C., and O’Driscoll, R. L. 2020. ESP3: An open-source software for the quantitative processing of hydro-acoustic data. SoftwareX, 12, 100581.
  27. Love, R. H. 1977. Target strength of an individual fish at any aspect. The Journal of the Acoustical Society of America, 62(6), 1397–1403.
  28. MacLennan, D., Gutiérrez Torero, M., Castillo Valderrama, R., Ganoza Chozo, F., Aliaga Rosales, A., Escudero Herrera, L., Gonzales Salas, A., y Chalén, X. 1998. Fuerza de Blanco de anchoveta (Engraulis ringens) utilizando frecuencias de 38 y 120 kHz.
  29. Maclennan, D. N., Fernandes, P. G., and Dalen, J. 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES Journal of Marine Science, 59(2), 365–369. https://doi.org/10.1006/jmsc.2001.1158
  30. MacLennan, D. N., Simmonds, E. J., MacLennan, D. N., and Simmonds, E. J. 1992. Target strength. Fisheries Acoustics, 164–200.
  31. Madrid-Vera, J., Amezcua, F., and Morales-Bojórquez, E. 2007. An assessment approach to estimate biomass of fish communities from bycatch data in a tropical shrimp-trawl fishery. Fisheries Research, 83(1), 81–89.
  32. Martínez, J. 2005. Manual de pesca blanca. 45 especies de interés comercial. Asociación de Exportadores de Pesca Blanca del Ecuador, ASOEXPEBLA.
  33. Mendoza-Nieto, K., Mila, C., Escofet, S., and Carrera-Fernández, M. 2023. Reproductive cycle and sexual maturity size of landed Selene peruviana (Perciformes: Carangidae) on the coasts of the Ecuadorian Pacific. Ciencias Marinas.
  34. Nielsen, J. R., and Lundgren, B. 1999. Hydroacoustic ex situ target strength measurements on juvenile cod (Gadus morhua L.). ICES Journal of Marine Science, 56(5), 627–639.
  35. Ona, E. 1990. Physiological factors causing natural variations in acoustic target strength of fish. Journal of the Marine Biological Association of the United Kingdom, 70(1), 107–127. https://doi.org/10.1017/S002531540003424X
  36. Ona, E. 1999. Methodology for Target Strength Measurements (With special reference to in situ techniques for fish and mikro-nekton) [Report]. ICES Cooperative Research Reports (CRR). https://doi.org/10.17895/ices.pub.5367
  37. Reid, D. G. 2000. Report on echo trace classification.
  38. Ricker, W. E. 1975. The Fisheries Research Board of Canada—Seventy-five years of achievements. Journal of the Fisheries Board of Canada, 32(8), 1465–1490.
  39. Salazar, M., Chacón, G., Alarcón, J., Luque, C., Cornejo, R., y Chalking, F. 2015. Flota de arrastre de fondo de menor escala en la Región Tumbes.
  40. Simmonds, J., and MacLennan, D. N. 2005. Fisheries acoustics: Theory and practice (Fish and Aquatic Resources). Wiley-Blackwell. 2nd edition.
  41. Sobradillo, B., Boyra, G., Pérez-Arjona, I., Martinez, U., and Espinosa, V. 2021. Ex situ and in situ target strength measurements of European anchovy in the Bay of Biscay. ICES Journal of Marine Science, 78(3), 782–796.
  42. Tichy, F. E., Solli, H., and Klaveness, H. 2003. Non-linear effects in a 200-kHz sound beam and the consequences for target-strength measurement. ICES Journal of Marine Science, 60(3), 571–574. https://academic.oup.com/icesjms/article-abstract/60/3/571/659428
  43. Tripp-Valdez, A., Arreguín-Sánchez, F., and Zetina-Rejón, M. J. 2012. The food of Selene peruviana (Actinopterygii: Perciformes: Carangidae) in the southern Gulf of California. Acta Ichthyologica et Piscatoria, 42(1), 1–7.
  44. Ubillus Bravo, M. Z. 2015. Efecto del cambio climático sobre los volúmenes de desembarque de Las principales especies icticas desembarcadas en Cancas de 2000 A 2010.
  45. Walker Jr, H., Hastings, P. A., Hyde, J. R., Lea, R. N., Snodgrass, O. E., and Bellquist, L. F. 2020. Unusual occurrences of fishes in the Southern California Current System during the warm water period of 2014–2018. Estuarine, Coastal and Shelf Science, 236, 106634.