How to protect Peruvian coastal wetlands? An answer based on a conceptual model of their drivers of change

Published 2023-10-11
Keywords
- coastal lakes; conceptual model; governance; mangroves; similarity; wetland conservation
How to Cite
Copyright (c) 2023 Angelo Jesús Gomez Vilca

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
The present work consisted of determining the number of Drivers of Change (DCh) of 24 wetlands of the Peruvian coast from a review of the scientific articles published between 2000 and 2020, with the use of the platforms Science Direct, Google Scholar, Scopus and Scielo. 172 scientific articles were reviewed, identifying 22 DCh. Agriculture, livestock, introduction of species and accumulation of debris were the most frequent direct DCh, while poor governance was the most common indirect DCh (38%); the wetland with the highest number of DCh was Los Pantanos de Villa. A positive correlation was verified between the production of scientific articles and the number of DCh identified per wetland. Four groups of wetlands had high similarity in their DCh (≥ 50%), which suggests that the management measures to face these impacts are similar. The co-appearance of DCh was divided into two groups with a similarity ≥ 50%. A conceptual model of DCh interactions and their effects on ecological processes was developed. The information from this work can serve to guide measures for the better management of these ecosystems on the Peruvian coast
Downloads
References
- Aponte-Ubillús, H. 2015. Ecosistemas potenciales para el turismo en la Costa de Lima y Callao: Oportunidades y perspectivas. Novum Otium. 1(1): 57-64. doi:10.21142/novum.v1i1.270
- Arana, C., y Salinas, L. 2003. Flora vascular de los Humedales de Chimbote, Perú. Revista Peruana de Biología. 10(2): 221-224.
- Aponte-Ubillús, H., y Ramírez-Huaroto, D. W. 2011. Humedales de la costa central del Perú: Estructura y amenazas de sus comunidades vegetales. Ecología Aplicada. 10(1): 31-39.
- Asselen, Sv., Verburg, P. H., Vermaat, J. E., y Janse, J. H. 2013. Drivers of Wetland Conversion: a Global Meta-Analysis. PLoS ONE 8(11): e81292. https://doi.org/10.1371/journal.pone.0081292
- Berkowitz, J. F., VanZomeren, C. M., Piercy, C. D., y White, J. R. 2018. Evaluation of coastal wetland soil properties in a degrading marsh. Estuarine, Coastal and Shelf Science. 212: 311-317. https://doi.org/10.1016/j.ecss.2018.07.021
- Broszeit, S., Beaumont, N. J., Hooper, T. L., Somerfield, P. J., y Austen, M. C. 2019. Developing conceptual models that link multiple ecosystem services to ecological research to aid management and policy, the UK marine example. Marine Pollution Bulletin. 141: 236-243. https://doi.org/10.1016/j.marpolbul.2019.02.051
- Caballero-Rico, F. C., Uresti-Marín, R. M., y Ramírez-de León, J. A. 2012. Análisis de la producción científica de la Universidad Autónoma de Tamaulipas y evaluación de su impacto en los indicadores educativos de calidad. Revista de la educación superior. 41(161): 31-51.
- Charcape-Ravelo, J. M., Benavides-Quevedo, D. D., Orozco Castro, N., y Correa-Seminario, V. A. 2018. Ecoturismo sustentable en los manglares de “San Pedro” de vice, Sechura – Piura. Revista de Investigaciones de la Universidad Le Cordon Bleu. 5(1): 93-102. https://doi.org/10.36955/RIULCB.2018v5n1.007
- Cloern, J. E., y Jassby, A. D. 2012. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco Bay. Reviews of Geophysics. 50(4). https://doi.org/10.1029/2012RG000397
- Davis, S. M., Childers, D. L., Lorenz, J. J., Wanless, H. R., y Hopkins, T. E. 2005. A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades. Wetlands. 25(4): 832.
- Engelhardt, K. A. M., y Ritchie, M. E. 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature. 411(6838): 687-689. https://doi.org/10.1038/35079573
- Euliss, N. H., LaBaugh, J. W., Fredrickson, L. H., Mushet, D. M., Laubhan, M. K., Swanson, G. A., Winter, T. C., Rosenberry, D. O., y Nelson, R. D. 2004. The wetland continuum: A conceptual framework for interpreting biological studies. Wetlands. 24(2): 448-458.
- Faulkner, S. 2004. Urbanization impacts on the structure and function of forested wetlands. Urban Ecosystems. 7(2): 89-106. https://doi.org/10.1023/B:UECO.0000036269.56249.66
- Feka, N. Z., y Ajonina, G. N. 2011. Drivers causing decline of mangrove in West-Central Africa: A review. International Journal of Biodiversity Science, Ecosystem Services & Management. 7(3): 217-230. https://doi.org/10.1080/21513732.2011.634436
- Finlayson, C. M., Bellio, M. G., y Lowry, J. B. 2005. A conceptual basis for the wise use of wetlands in northern Australia – linking information needs, integrated analyses, drivers of change and human well-being. Marine and Freshwater Research. 56(3): 269-277. https://doi.org/10.1071/MF04077
- Gonzales, S., Aponte, H., y Cano, A. 2019. Actualización de la flora vascular del humedal Santa Rosa—Chancay (Lima, Perú). Arnaldoa. 26(3): 867-882. http://dx.doi.org/10.22497/arnaldoa.263.26303.
- Hammer, Ø.; D. A. T. Harper y P. D. Rayan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 4(1): 9.
- Jiang, T., Pan, J., Pu, X.-M., Wang, B., y Pan, J.-J. 2015. Current status of coastal wetlands in China: Degradation, restoration, and future management. Estuarine, Coastal and Shelf Science. 164: 265-275. doi:10.1016/j.ecss.2015.07.046
- McKenna, O. P., Kucia, S. R., Mushet, D. M., Anteau, M. J., y Wiltermuth, M. T. 2019. Synergistic Interaction of Climate and Land-Use Drivers Alter the Function of North American, Prairie-Pothole Wetlands. Sustainability. 11(23): 6581. https://doi.org/10.3390/su11236581
- Mendoza-Carbajal, L. H. 2020. Primer reporte de Lemmermanniella uliginosa (Synechococcaceae, Cyanobacteria) en América del sur, y primer reporte del género para Perú. Revista Peruana de Biología. 27(3): 401-405. https://doi.org/10.15381/rpb.v27i3.17301
- Aparcana-Mendoza, M.A., Castillo-Pichuilla, P.E., Pisconte-Vilca, J., Anchante-Aparcana, J.C., Medina-Mena, A., Ramos-Alarcón, L. y Sotelo-Muñoz, R. 2020. Características de la comunidad vegetal del humedal de Tambo de Mora Chincha, Ica Perú. ÑAWPARISUN Revista de Investigación Científica. 2(4): 45-56.
- Moreno-Casasola, P., Rosas, H. L., y Rodríguez-Medina, K. 2014. From tropical wetlands to pastures on the coast of the Gulf of Mexico. Pastos. 42(2): 185-217.
- Pauchard, A., Aguayo, M., Peña, E., y Urrutia, R. 2006. Multiple effects of urbanization on the biodiversity of developing countries: The case of a fast-growing metropolitan area (Concepción, Chile). Biological Conservation. 127(3): 272-281. https://dx.doi.org/10.1016/j.biocon.2005.05.015
- Ram, S. S., Aich, A., Sengupta, P., Chakraborty, A., y Sudarshan, M. 2018. Assessment of trace metal contamination of wetland sediments from eastern and western coastal region of India dominated with mangrove forest. Chemosphere. 211: 1113-1122. https://doi.org/10.1016/j.chemosphere.2018.07.201
- Ramirez, D. W., Aponte, H., Lertora, G., y Gil, F. 2018. Incendios en el humedal Ramsar Los Pantanos de Villa (Lima-Perú): Avances en su conocimiento y perspectivas futuras. Revista de Investigaciones Altoandinas. 20(3): 347-360. http://dx.doi.org/10.18271/ria.2018.398.
- Rivera, G., Gonzales, S., y Aponte, H. 2021. Wetlands of the South American Pacific Coast: A Bibliometric Approach. Wetlands Ecol Manage. 1-9. https://doi.org/10.1007/s11273-021-09830-8
- Rongoei, P. J. K., Kipkemboi, J., Okeyo-Owuor, J. B., y Dam, A. Van. 2013. Ecosystem services and drivers of change in Nyando floodplain wetland, Kenya. African Journal of Environmental Science and Technology. 7(5): 274-291. https://doi.org/10.5897/AJEST12.224
- Roth, B. J. 2010. An Academic Perspective on Grey Literature. Archaeologies. 6(2): 337-345. https://doi.org/10.1007/s11759-010-9141-9
- Ruiz-Santillán, M. P., Rodríguez, E. H., y Coico, F. M. 2020. Diagnóstico ecológico del humedal chochoc. Rebiol. 39(2): 3-18. http://dx.doi.org/10.17268/rebiol.2019.39.02.01
- Sarkar, P., Salami, M., Githiora, Y., Vieira, R., Navarro, A., Clavijo, D., y Padgurschi, M. 2020. A conceptual model to understand the drivers of change in tropical wetlands: A comparative assessment in India and Brazil. Biota Neotropica. 20(suppl. 1): e20190913. https://doi.org/10.1590/1676-0611-BN-2019-0913
- Vilela-Jácobo, R. 2010. Estudio del recurso natural humedales de villa maría y su importancia en el desarrollo urbano, ambiental y turístico en la ciudad de Chimbote – Perú. UCV-Scientia. 2(1): 81-90.
- Wang, N., Li, J.-M., y Xu, Z.H. 2021. Public preference for the ecological restoration of coastal wetlands in Jiaozhou Bay in China based on a choice experiment. Marine Policy 128: 104487. https://doi.org/10.1016/j.marpol.2021.104487
- Wingard, G. L., y Lorenz, J. J. 2014. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands. Ecological Indicators. 44: 92-107. https://doi.org/10.1016/j.ecolind.2014.01.007
- Woodward, R. T., y Wui, Y.-S. 2001. The economic value of wetland services: A meta-analysis. Ecological Economics. 37(2): 257-270. https://doi.org/10.1016/S0921-8009(00)00276-7
- Zorrilla-Miras, P., Palomo, I., Gómez-Baggethun, E., Martín-López, B., Lomas, P. L., y Montes, C. 2014. Effects of land-use change on wetland ecosystem services: A case study in the Doñana marshes (SW Spain). Landscape and Urban Planning. 122: 160-174. https://doi.org/10.1016/j.landurbplan.2013.09.013