Vol. 46 No. 2 (2017)
Research Articles

Production of (+)-discodermolide by the sponge Discodermia dissoluta under fixed and suspended culture systems

Javier Gomez-León
Instituto de Investigaciones Marinas y Costeras – Invemar
Johann Lopez-Navarro
Instituto de Investigaciones Marinas y Costeras – Invemar
Alicia Millanguir
Universidad Católica de Temuco, Campus Temuco
Jesus David Castaño
Instituto de Investigaciones Marinas y Costeras – Invemar
Sven Zea
Universidad Nacional de Colombia – Sede Caribe – Instituto de Estudios en Ciencias del Mar—Cecimar

Published 2017-11-27

Keywords

  • Discodermia dissoluta,
  • ( )-discodermolide,
  • Sponge fragments,
  • Sponge culture,
  • Aquaculture.

How to Cite

1.
Gomez-León J, Lopez-Navarro J, Millanguir A, Castaño JD, Zea S. Production of (+)-discodermolide by the sponge Discodermia dissoluta under fixed and suspended culture systems. Bol. Investig. Mar. Costeras [Internet]. 2017 Nov. 27 [cited 2025 Apr. 3];46(2). Available from: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/755

Abstract

The macrolide (+)-discodermolide produced by the marine sponge Discodermia dissoluta shows promising antitumor, antimitotic, and immunosuppressive activity. However, the sustainable supply of any molecule requires much in situ and in vitro research to optimize and later obtain the molecule of interest. In this study, two culture systems—fixed and suspended—were evaluated at 15-m depth in two sites, Punta de Betín and Nenguange, in Santa Marta (Colombian Caribbean). Survival, growth, and production of (+)-discodermolide were recorded, with the suspended system resulting in better growth and survival, depending on the culture site. The influence of the different environmental factors on survival was also studied, and a negative correlation with temperature was observed. Salinity, solar radiation, organic matter, and water flow were not correlated. Finally, no significant differences in the production of (+)-discodermolide existed between the culture systems and study sites. Production ranged from 20 to 270 μg per gram of dry sponge.

Downloads

Download data is not yet available.

References

  1. Blunt, J.W., B.R. Copp, R.A. Keyzers, M.H. Munro and M.R. Prinsep. 2013. Marine natural products. Nat. Prod. Rep., 30(2): 237-323.
  2. Caralt, S. 2007. Sponge Culture: Learning from biology and ecology. Wageningen University. 187 p.
  3. Carballo, J.L., B. Yañez, E. Zubia, M.J. Ortega and C. Vega. 2009. Culture of explants from the sponge Mycale cecilia to obtain bioactive Mycalazal-Type
  4. metabolites. Mar. Biotech., 12: 516-525.
  5. Duckworth, A. 2009. Farming sponges to supply bioactive metabolites and bath sponges: A Review Mar. Biotech., 11: 669-679.
  6. Duckworth, A.R. and C.N. Battershill. 2003a. Developing farming structures for production of biologically active sponge metabolites. Aquaculture, 217:
  7. –156.
  8. Duckworth, A.R. and C.N. Battershill. 2003b. Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols
  9. and environment. Aquaculture, 221: 311–329.
  10. Duckworth, A.R., C. Battershill and P.R. Bergquist. 1997. Influence of explant procedures and environmental factors on culture success of three sponges.
  11. Aquaculture, 165: 251-267.
  12. Faulkner, D.J. 2002. Marine natural products. Nat. Prod. Rep., 19: 1-48.
  13. Ferrati, C., S. Vacca; R. Pronzato, R. Manconi and A.R. Duckworth. 2006. Sponge culture in a small harbour: the case study of the demosponges Agelas
  14. oroides Agelasida) and Petrosia ficiformis (Haplosclerida) in the W-Mediterranean. Abstracts, 7th Int. Sponge Symp., Rio de Janeiro, 7-13 may.
  15. Florence, G.J., M.N. Gardner and I. Paterson. 2008. Development of practical syntheses of the marine anticancer agents discodermolide and dictyostatin.
  16. Nat. Prod. Rep., 25: 342-375.
  17. Garay, J., J. Betancourt, G. Ramírez, B. Marin, B. Cadavid, L. Panizzo, L. Lesmes, J. E. Sanchez, S. L. Lozano y A. Franco. 2003. Manual de técnicas
  18. analíticas para la determinación de parámetros Fisicoquímicos y contaminación marina: Agua, sedimento y organismos. Serie Documentos Generales
  19. , Invemar, Santa Marta. 177 p.
  20. Gunasekera, S, M. Gunasekera and R. Longley. 1990. Discodermolide: a new bioactive polyhydroxilated lactone from the marine sponge Discodermia
  21. dissoluta. J. Org. Chem., 55: 4912-4915.
  22. Hadas, E., M. Shpigel and M. Ilan. 2005. Sea ranching of the marine sponge Negombata magnifica (Demospongiae, Latrunculiidae) as a first step for
  23. latrunculin B mass production. Aquaculture, 244: 159 -169.
  24. Huang, Y.C.A., H.J. Hsieh, S.C. Huang, P.J. Meng, Y.S. Chen, S. Keshavmurthy, Y. Nozawa and C.A. Chen. 2011. Nutrient enrichment caused by marine
  25. cage culture and its influence on subtropical coral communities in turbid waters. Mar. Ecol. Prog. Ser., 423: 83–93.
  26. Leys, S.P. and N.R.J. Lauzon. 1998. Hexactinellid sponge ecology: growth rates and seasonality in deep water sponges. J. Exp. Mar. Biol. Ecol., 230:
  27. –129.
  28. Longley, R.E., S.P. Gunasekera and S.A. Pomponi. 1998. Discodermolide compounds. U.S. Patent 5840.750.
  29. Mita, A., C. Lockhart, T.L. Chen, K. Boshinski, J. Curtright, W. Cooper, L. Hammond, M. Rothenberg, E. Rowinsky and S.A. Sharma. 2004. Phase I
  30. pharmacokinetic (PK) trial of XAA296A (Discodermolide) administered every 3 wks to adult patients with advanced solid malignancies. J. Clin.
  31. Oncol., 22(14): 2025.
  32. Müller, W., W. Wimmer, W. Schatton, M. Bohm, R. Batel and Z. Filic. 1999. Initiation of an aquaculture of sponges for the sustainable production of
  33. bioactive metabolites in open systems: example, Geodia cydonium. Mar. Biotech., 1: 569-579.
  34. Nishizaki, M.T. and J.D. Ackerman. 2007. Juvenile–adult associations in sea urchins (Strongylocentrotus franciscanus and S. droebachiensis): protection
  35. from predation and hydrodynamics in S. franciscanus. Mar. Biol., 151:135–145.
  36. Page, M., P. Northcote, V. Webb, S. Mackey and S. Handley. 2005. Aquaculture trials for the production of biologically active metabolites in the New
  37. Zealand sponge Mycale hentscheli (Demospongiae: Poecilosclerida). Aquaculture, 250: 256– 269.
  38. Parra, F.J. y S. Zea. 2003. Comparación de la abundancia, distribución y algunas características de las esponjas del género Ircinia (Porifera: Demospongiae)
  39. en dos ambientes contrastantes del área de Santa Marta, Caribe colombiano. Bol. Invest. Mar. Cost., 32: 75-91.
  40. Reiswig, H.M. 1973. Population dynamics of three Jamaican desmopongiae. Bull. Mar. Sci., 23 (2): 191–226.
  41. Roa, A., L. Saavedra, A. Acero P. y L. Mejía. 2007. Nuevos registros de peces para el Caribe colombiano de los órdenes Myctophiformes, Polymixiiformes,
  42. Gadiformes, Ophidiiformes y Lophiiformes. Bol. Invest. Mar. Cost., 36:181-207.
  43. Ruiz, C. 2009. Aspectos ecológicos de la población de la esponja Discodermia dissoluta (Porifera: Demospongiae: Lithistida) en el Caribe Colombiano.
  44. Tesis Biol. Mar., Univ. Jorge Tadeo Lozano, Bogotá. 50 p.
  45. Ruiz, C., K. Valderrama, L. Castellanos and S. Zea. 2013. Mariculture and natural production of the antitumoural (+)-discodermolide by the Caribbean
  46. marine sponge Discodermia dissoluta. Mar. Biotech., 15(5): 571–583.
  47. Schirmer, A., R. Gadka, C.D. Reeve, F. Ibrahim, E.F. DeLong and C.R. Hutchinson. 2005. Metagenomic analysis reveals diverse polyketide synthase gene
  48. clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol., 71:4840-4849.
  49. Sipkema, D., H.W. Blanch and R.H. Wijffels. 2006. Large-scale production of pharmaceuticals by marine sponges: sea, cells or synthesis? Abstracts, 7th Int.
  50. Sponge Symp. Rio de Janeiro. 7-13 mayo 2006.
  51. Smith, A.B., B.S. Freeze, I. Brouard and T. Hirose. 2003. A practical improvement, enhancing the large-scale synthesis of (+)-discodermolide: A thirdgeneration
  52. approach. Org. Lett., 5: 4405-4408.
  53. Tziveleka, L.A., C. Vagias and V. Roussis. 2003. Natural products with anti-HIV activity from marine organisms. Curr. Top Med. Chem., 3(13): 1512-35.
  54. Valderrama, K. 2009. Evaluación de la oferta natural y potencial de producción de (+)-discodermólido y/o análogos de la esponja marina del Caribe
  55. colombiano Discodermia dissoluta. Tesis M. Sc. Química, Univ. Nacional de Colombia, Bogotá. 104 p.
  56. Valderrama, K., L. Castellanos and S. Zea. 2010. Validation and evaluation of an HPLC methodology for the quantification of the potent antimitotic
  57. compound (+)-discodermolide in the Caribbean marine sponge Discodermia dissoluta. J. Sep. Sci., 33(15): 2316-21.
  58. Van Treeck, P., M. Eisinger, J. Müller, M. Paster and H. Schuhmacher. 2003. Mariculture trials with Mediterranean sponge species: the exploitation of an old
  59. natural resource with sustainable and novel methods. Aquaculture, 218:439–455.
  60. Vásquez, E. 2011. Cultivo in situ de la esponja de Caribe Discodermia dissoluta con miras a la producción biotecnológica del compuesto antitumoral (+)-
  61. Discodermólido. Tesis Biol., Univ. Nacional de Colombia, Bogotá. 49 p.
  62. Webster, N.S., R.E. Cobb and A.P. Negri. 2008. Temperature thresholds for bacterial symbiosis with a sponge. ISME J., 2(8): 830-42.
  63. Voogd, N.J. 2007. The mariculture potential of the Indonesian reef-dwelling sponge Callyspongia (Euplacella) biru: Growth, survival and bioactive
  64. compounds. Aquaculture, 262: 54–64.
  65. Zea S. 1987. Esponjas del Caribe colombiano. Catalogo Científico, Bogotá. 286 p.