Vol. 49 No. SuplEsp (2020)
Research Articles

Cryptobenthic fishes in the Uramba National Natural Park Bahía Málaga (Colombia), Tropical Eastern Pacific

Gustavo Adolfo Castellanos-Galindo
Universidad del Valle
Diana Medina-Contreras
Universidad del Valle
Juan Felipe Lazarus
Universidad del Valle
Jaime Ricardo Cantera Kintz
Universidad del Valle

Published 2020-12-19

Keywords

  • cryptic ichthyofauna,
  • Gobiidae,
  • Labrisomidae,
  • estuarine ecology,
  • rocky reefs

How to Cite

1.
Castellanos-Galindo GA, Medina-Contreras D, Lazarus JF, Cantera Kintz JR. Cryptobenthic fishes in the Uramba National Natural Park Bahía Málaga (Colombia), Tropical Eastern Pacific. Bol. Investig. Mar. Costeras [Internet]. 2020 Dec. 19 [cited 2025 May 9];49(SuplEsp):119-36. Available from: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1090

Abstract

Cryptobenthic fishes contribute significantly to the trophic dynamics of coastal ecosystems. This study aimed at determining the composition of this assemblage and testing if its structure differs temporally and spatially in the Uramba National Natural Park Bahía Málaga (Tropical Eastern Pacific). Fish assemblages were collected using artificial traps in three zones, between June 2008 and August 2009. Twenty-six fish species belonging 11 families were recorded. Gobiidae and Labrisomidae were the most representative families (species: 34.6 % and individuals: 66 %). Species richness and abundance increased in a gradient from the interior to the exterior of the park. Using multivariate statistic techniques, a spatial pattern in assemblage structure was identified with inner zone being significantly different from the mid and outer zones. Cerdale ionthans, Gobiosoma seminudum, Starksia fulva, and Gobulus hancocki were mainly responsible for this differentiation (> 59 % contribution). The use of artificial habitats to sample cryptobenthic fish proved to be an efficient way to identify an
overlooked part ichthyofauna using traditional sampling techniques and was also useful to compare the spatial variability of these assemblages. Comparisons with cryptobenthic fish assemblages in other biogeographic regions indicate that, due to their low species richness in the Tropical Eastern Pacific, these assemblages in both Colombia and Mexico show low functional redundancy and considerable differences in their
predominant trophic modes.

Downloads

Download data is not yet available.

References

  1. Ackerman, J.L. and D.R. Bellwood. 2000. Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar. Ecol. Prog. Ser., 206: 227-237. https://doi.org/10.3354/meps206227
  2. Ackerman, J.L. and D.R. Bellwood. 2002. Comparative efficiency of clove oil and rotenone for sampling tropical reef fish assemblages. J. Fish Biol., 60: 893-901. https://doi.org/10.1111/j.1095-8649.2002.tb02416.x
  3. Alzate, A., F.A. Zapata, and A. Giraldo. 2014. A comparison of visual and collection-based methods for assessing community structure of coral reef fishes in the Tropical Eastern Pacific. Rev. Biol. Trop., 62: 359-371. https://doi.org/10.15517/rbt.v62i0.16361
  4. Anker, A. and J.F. Lazarus. 2015a. Description of two new associated infaunal decapod crustaceans (Axianassidae and Alpheidae) from the tropical eastern Pacific. Pap. Avulsos Zool., 55(8):115-129. https://doi.org/10.1590/0031-1049.2015.55.08
  5. Anker, A. and J.F. Lazarus. 2015b. On two new species of the shrimp genus Salmoneus Holthuis, 1955 (Decapoda, Caridea, Alpheidae) from the tropical eastern Pacific. Zootaxa, 3957(5): 520-534. https://doi.org/10.11646/zootaxa.3957.5.2
  6. Anker, A. and J.F. Lazarus. 2017. First finding of the shrimp genus Harperalpheus Felder & Anker, 2007 in the eastern Pacific, with description of a new species from Bahía Málaga, Colombia (Malacostraca: Decapoda: Alpheidae). Zootaxa, 4329(2): 196-200. https://doi.org/10.11646/zootaxa.4329.2.7
  7. Balart, E.F., A. González-Cabello, R.C. Romero-Ponce, A. Zayas-Álvarez, M. Calderón-Parra, L. Campos-Dávila, and L.T. Findley. 2006. Length-weight relationships of cryptic reef fishes from southwestern Gulf of California, Mexico. J. Appl. Ichthyol., 22: 6-318. https://doi.org/10.1111/j.1439-0426.2006.00670.x
  8. Barletta, M., U. Saint-Paul, A. Barletta-Bergan, W. Ekau, and D. Schories. 2002. Spatial and temporal distribution of Myrophis punctatus (Ophichthidae) and associated fish fauna in a northern Brazilian intertidal mangrove forest. Hydrobiologia, 426: 65-74. https://doi.org/10.1023/A:1003939000270
  9. Beldade, R. and E.J. Gonçalves. 2007. An interference visual census technique applied to cryptobenthic fish assemblages. Vie et Milieu, 57: 61-65.
  10. Betancur, R., E.O. Wiley, G. Arriata, A. Acero, N. Bailly, M. Miya, G. Lecointre, and G. Ortí. 2017. Phylogenetic classification of bony fishes. BMC Evol. Biol., 17: 162. https://doi.org/10.1186/s12862-017-0958-3
  11. Brandl, S.J., L. Tornabene, C.H.R. Goatley, J.M. Casey, R.A. Morais, I.M. Côté, C.C. Baldwin, V. Parravicini, N.M.D. Schiettekatte, and D.R. Bellwood. 2019. Demographic dynamics of the smallest marine vertebrate fuel coral reef ecosystem functioning. Science, 364: 1189-92. https://doi.org/10.1126/science.aav3384
  12. Cantera-Kintz, J.R. 1991. Etude structurale des mangroves et des peuplements macrobenthiques littoraux de deux baies du Pacifique colombien (Malaga et Buenaventura), rapport avec les conditions du milieu et les perturbations anthropiques. Ph.D. Thesis, Univ Aix-Marseille II, Marseille. 429 p.
  13. Cantera-Kintz, J.R., R. Neira y C. Ricaurte. 1998. Bioerosión en la costa pacífica colombiana: un estudio sobre la biodiversidad, la ecología y el impacto de los animales destructores de los acantilados rocosos. Fondo FEN Colombia, Bogotá. 135 p.
  14. Cantera-Kintz, J.R., E. Londoño-Cruz, L.M. Mejía-Ladino, L. Herrera-Orozco, C.A. Satizabal, and N. Uribe-Castañeda. 2013. Environmental issues of a Marine Protected Area in a tectonic estuary in the Tropical Eastern Pacific: Uramba (Malaga Bay, Colombia). context, biodiversity, threats and challenges. J. Water Res. Prot., 5: 1037-1047. https://doi.org/10.4236/jwarp.2013.511109
  15. Carassou, L., C. Mellin, and D. Pontón. 2009. Assessing the diversity and abundances of larvae and juveniles of coral reef fish: a synthesis of six sampling techniques. Biodivers. Conserv., 18: 355-371. https://doi.org/10.1007/s10531-008-9492-3
  16. Casey J.M., C.P. Meyer, F. Morat, S.J. Brandl, S. Planes, and V. Parravicini. 2019. Reconstructing hyperdiverse food webs: gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol., 10: 1157-1170. https://doi.org/10.1111/2041-210X.13206
  17. Castellanos-Galindo, G.A. and U. Krumme. 2013. Tidal, diel and seasonal effects on intertidal mangrove fish in a high-rainfall area of the Tropical Eastern Pacific. Mar. Ecol. Prog. Ser., 494: 249-265. https://doi.org/10.3354/meps10512
  18. Castellanos-Galindo, G.A., A. Giraldo, and E.A. Rubio. 2005. Community structure of an assemblage of tidepool fishes on a Tropical Eastern Pacific rocky shore, Colombia. J. Fish Biol., 67: 392-408. https://doi.org/10.1111/j.0022-1112.2005.00735.x
  19. Castellanos-Galindo G.A., J.A. Caicedo-Pantoja, L.M. Mejía-Ladino y E. Rubio. 2006. Peces marinos y estuarinos de Bahía Málaga, Valle del Cauca, Pacífico colombiano. Biota Colomb., 7(2): 263-282.
  20. Castellanos-Galindo, G.A., A. Giraldo, and F.A. Zapata. 2014. Tidepool fish assemblages of Gorgona Island, Colombian Pacific coast: a local and regional comparison. Rev. Biol. Trop., 62: 373-390.
  21. Chasqui L., A. Polanco, A. Acero P., P.A. Mejía-Falla, A. Navia, L.A. Zapata y J.P. Caldas (Eds). 2017. Libro rojo de peces marinos de Colombia. Instituto de Investigaciones Marinas y Costeras Invemar y Ministerio de Ambiente y Desarrollo Sostenible, Santa Marta. 552 p.
  22. Depczynski, M. and D.R. Bellwood. 2003. The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar. Ecol. Prog. Ser., 256: 183-191. https://doi.org/10.3354/meps256183
  23. Enochs, I.C., L.T. Toth, V.W. Brandtneris, J.C. Afflerbach, and D.P. Manzello. 2011. Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Mar. Ecol. Prog., 438: 105-118. https://doi.org/10.3354/meps09259
  24. Froese, R. and D. Pauly. 2019. FishBase. https://www.fishbase.se 15/11/2019.
  25. Glynn, P.W. 2006. Fish utilization of simulated coral reef frameworks versus eroded rubble substrates off Panama, eastern Pacific. Proc. Coral Reef Symp., 1: 250-256.
  26. González-Cabello, A. and D.R. Bellwood. 2009. Local ecological impacts of regional biodiversity on reef fish assemblages. J. Biogeogr., 36: 1129-1137. https://doi.org/10.1111/j.1365-2699.2008.02065.x
  27. Guevara-Fletcher, C.E., J.R. Cantera-Kintz, L.M. Mejía-Ladino, and F.A. Cortes. 2011. Benthic macrofauna associated with submerged bottoms of a tectonic estuary in Tropical Eastern Pacific. J. Mar. Sci., 2011: 1-13. https://doi.org/10.1155/2011/193759
  28. Loreau, M. 2004. Does functional redundancy exist? Oikos, 104(3): 606-611. https://doi.org/10.1111/j.0030-1299.2004.12685.x
  29. Lozano, S. and F.A. Zapata. 2003. Short-term temporal patterns of early recruitment of coral reef fishes in the Tropical Eastern Pacific. Mar. Biol., 142: 399–409. https://doi.org/10.1007/s00227-002-0948-9
  30. Martínez, J.O. and E. López-Ramos. 2011. High-resolution seismic stratigraphy of the late Neogene of the central sector of the Colombian Pacific continental shelf: a seismic expression of an active continental margin. J. S. Am. Earth. Sci., 31: 28-44. https://doi.org/10.1016/j.jsames.2010.09.003
  31. Medina-Contreras, D., J.R. Cantera-Kintz, A. Sánchez-González, and E. Mancera. 2018. Food web structure and trophic relations in a riverine mangrove system in the tropical eastern Pacific, central coast of Colombia. Estuaries Coast, 41(5): 1511-1521. https://doi.org/10.1007/s12237-017-0350-y
  32. Mellin, C. and D. Pontón. 2009. Assemblages of reef fish settling on artificial substrates: effect of ambient habitat over two temporal scales. Mar. Freshwater. Res., 60: 1285-1297. https://doi.org/10.1071/MF08319
  33. Oksanen, J.F., G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs, and H. Wagner. 2019. vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan 20/02/2020.
  34. Polidoro, B., T. Brooks, K.E. Carpenter, G.J. Edgar, S. Henderson, J. Sanciangco, and D.R. Robertson. 2012. Patterns of extinction risk and threat for marine vertebrates and habitat-forming species in the Tropical Eastern Pacific. Mar. Ecol. Prog. Ser., 448: 93-104. https://doi.org/10.3354/meps09545
  35. R Core Team. 2019. R: a language and environment for statistical computing. https://www.R-project.org 05/12/2019.
  36. Ransome, E., J.B. Geller, M. Timmers, M. Leray, A. Mahardini, A. Sembiring, A.G. Collins, and C. Meyer, C.P. (2017). The importance of standardization for biodiversity comparisons: a case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo’orea coral reefs, French Polynesia. PloS ONE, 12(4), e0175066. https://doi.org/10.1371/journal.pone.0175066
  37. Robertson, D.R. and G.R. Allen. 2008. Shorefishes of the Tropical Eastern Pacific online information system. Smithsonian Tropical Research Institute, Balboa. https://biogeodb.stri.si.edu/sftep 05/10/2009.
  38. Robertson, D.R. and W.F. Smith-Vaniz. 2008. Rotenone: an essential but demonized tool for assessing marine fish biodiversity. Bioscience, 58(2): 165-170. https://doi.org/10.1641/B580211
  39. Robertson, D.R., G.D. Green, and C.B. Victor. 1988. Temporal coupling of production and recruitment of larvae of a Caribbean reef fish. Ecology, 69: 370-381. https://doi.org/10.2307/1940435
  40. Smith-Vaniz, W.F., H.L. Jelks, and L.A. Rocha. 2006. Relevance of cryptic fishes in biodiversity assessments: a case study at Buck Island Reef National Monument, St. Croix. Bull. Mar. Sci., 79: 17-48.
  41. Valles, H., D.L. Kramer, and W. Hunte. 2006. A standard unit for monitoring recruitment of fishes to coral reef rubble. J. Exp. Mar. Biol. Ecol., 336: 171-183. https://doi.org/10.1016/j.jembe.2006.05.005
  42. Willis, T.J. 2001. Visual census methods underestimate density and diversity of cryptic reef fishes. J. Fish Biol., 59: 1408-1411. https://doi.org/10.1006/jfbi.2001.1721
  43. Zimmerman, T.L. and J.W. Martin. 2004. Artificial reef matrix structures (ARMS): an inexpensive and effective method for collecting coral reef-associated invertebrates. Gulf Caribb. Res., 16: 59-6. https://doi.org/10.18785/gcr.1601.08