Valor y límites de los datos de registro botánico de la GBIF en el mapeo de la extensión de manglar mediante la clasificación KNN de imágenes de Sentinel-2
Publicado 2025-01-01
Palabras clave
- Open Data, Mangrove, Mapping, Accuracy assessment, GBIF
Cómo citar
Derechos de autor 2024 Julien Andrieu
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Resumen
En el contexto actual, que enfatiza la importancia de los datos de acceso abierto, este artículo busca realizar la primera evaluación de la efectividad de la base de datos de la Global Biodiversity Information Facility (GBIF) para entrenar clasificadores de imágenes satelitales multiespectrales de acceso abierto con el fin cartografiar la extensión de manglares. Se eligieron seis áreas en Australia, Benín, Brasil, Colombia, Malasia y EEUU por su densidad de datos de presencia de manglar y su proximidad con otras áreas de vegetación boscosa húmeda. Se utilizaron tres conjuntos de datos de acceso abierto: imágenes Sentinel-2, el visualizador de alta resolución de Google Earth y datos de presencia descargados del sitio de la GBIF. En primer lugar, se procesó un algoritmo de k-vecinos más cercanos (KNN), entrenándolo con píxeles circundantes de los datos de la GBIF. Luego, se compararon los resultados con los de una clasificación no supervisada (K-means). La exactitud de los dos métodos se evaluó mediante matrices de error de un proceso de fotointerpretación doble-ciego de imágenes de muy alta resolución obtenidas de Google Earth. El algoritmo KNN obtuvo índices kappa de 0.85 a 0.94, muy similares a los del método no supervisado (de 0.95 a 0.96). La GBIF posee un conjunto de datos adecuado para lugares con información, por lo que se invita a la comunidad a llenar los principales vacíos geográficos en su base de datos.
Descargas
Citas
- Andrieu, J. (2018). Land cover changes on the West-African coastline from the Saloum Delta (Senegal) to Rio Geba (Guinea-Bissau) between 1979 and 2015. European Journal of Remote Sensing, 51(1), 314–325. https://doi.org/10.1080/22797254.2018.1432295
- Andrieu, J., Cormier Salem, M., Descroix, L., Sané, T., Dièye, E., & Ndour, N. (2018). Correctly assessing forest change in a priority West African mangrove ecosystem: 1986–2010 An answer to Carney et al., 2014 paper “Assessing forest change in a priority West African mangrove ecosystem: 1986–2010.” Remote Sensing Applications: Society and Environment, 13. https://doi.org/10.1016/j.rsase.2018.12.001
- Bihamta Toosi, N., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & T. Waser, L. (2020). Land Cover Classification in Mangrove Ecosystems Based on VHR Satellite Data and Machine Learning—An Upscaling Approach. Remote Sensing, 12(17), 2684. https://doi.org/10.3390/rs12172684
- Biswas, H., Zhang, K., Ross, M. S., & Gann, D. (2020). Delineation of Tree Patches in a Mangrove-Marsh Transition Zone by Watershed Segmentation of Aerial Photographs. Remote Sensing, 12(13), 2086. https://doi.org/10.3390/rs12132086
- Cha, S.-Y., & Park, C.-H. (2007). The Utilization of Google Earth Images as Reference Data for The Multitemporal Land Cover Classification with MODIS Data of North Korea. Korean Journal of Remote Sensing, 23(5), 483–491. https://doi.org/10.7780/kjrs.2007.23.5.483
- Cohen, W. B., Spies, T. A., Alig, R. J., Oetter, D. R., Maiersperger, T. K., & Fiorella, M. (2002). Characterizing 23 Years (1972–95) of Stand Replacement Disturbance in Western Oregon Forests with Landsat Imagery. Ecosystems, 5(2), 122–137. https://doi.org/10.1007/s10021-001-0060-X
- Darmawan, S., Sari, D. K., Wikantika, K., Tridawati, A., Hernawati, R., & Sedu, M. K. (2020). Identification before-after Forest Fire and Prediction of Mangrove Forest Based on Markov-Cellular Automata in Part of Sembilang National Park, Banyuasin, South Sumatra, Indonesia. Remote Sensing, 12(22), 3700. https://doi.org/10.3390/rs12223700
- Dorais, A., & Cardille, J. (2011). Strategies for Incorporating High-Resolution Google Earth Databases to Guide and Validate Classifications: Understanding Deforestation in Borneo. Remote Sensing, 3(6), 1157–1176. https://doi.org/10.3390/rs3061157
- Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026
- Franco-Lopez, H., Ek, A. R., & Bauer, M. E. (2001). Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sensing of Environment, 77(3), 251–274. Scopus. https://doi.org/10.1016/S0034-4257(01)00209-7
- Giri, C. (2016). Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sensing, 8(9), 783. https://doi.org/10.3390/rs8090783
- Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., & Ellis, A. C. (1998). Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 19(5), 935–956. https://doi.org/10.1080/014311698215801
- Heumann, B. W. (2011). Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Progress in Physical Geography: Earth and Environment, 35(1), 87–108. https://doi.org/10.1177/0309133310385371
- Hu, T., Zhang, Y., Su, Y., Zheng, Y., Lin, G., & Guo, Q. (2020). Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data. Remote Sensing, 12(10), 1690. https://doi.org/10.3390/rs12101690
- Huang, C., Kim, S., Song, K., Townshend, J. R. G., Davis, P., Altstatt, A., Rodas, O., Yanosky, A., Clay, R., Tucker, C. J., & Musinsky, J. (2009). Assessment of Paraguay’s forest cover change using Landsat observations. Global and Planetary Change, 67(1), 1–12. https://doi.org/10.1016/j.gloplacha.2008.12.009
- Katila, M., & Tomppo, E. (2001). Selecting estimation parameters for the finnish multisource national forest inventory. Remote Sensing of Environment, 76(1), 16–32. Scopus. https://doi.org/10.1016/S0034-4257(00)00188-7
- Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing, 3(5), 878–928. https://doi.org/10.3390/rs3050878
- Lombard, F., Soumaré, S., Andrieu, J., & Josselin, D. (2023). Mangrove zonation mapping in West Africa, at 10-m resolution, optimized for inter-annual monitoring. Ecological Informatics, 102027. https://doi.org/10.1016/j.ecoinf.2023.102027
- Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., & Merchant, J. W. (2000). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6–7), 1303–1330. https://doi.org/10.1080/014311600210191
- Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., & Worthy, L. D. (2006). Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105(2), 142–154. https://doi.org/10.1016/j.rse.2006.06.018
- Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review. Complex & Intelligent Systems, 7(6), 2797–2818. https://doi.org/10.1007/s40747-021-00457-z
- McRoberts, R. E., Nelson, M. D., & Wendt, D. G. (2002). Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sensing of Environment, 82(2–3), 457–468. Scopus. https://doi.org/10.1016/S0034-4257(02)00064-0
- Nababa, I. I., Symeonakis, E., Koukoulas, S., Higginbottom, T. P., Cavan, G., & Marsden, S. (2020). Land Cover Dynamics and Mangrove Degradation in the Niger Delta Region. Remote Sensing, 12(21), 3619. https://doi.org/10.3390/rs12213619
- Pham, T. D., Le, N. N., Ha, N. T., Nguyen, L. V., Xia, J., Yokoya, N., To, T. T., Trinh, H. X., Kieu, L. Q., & Takeuchi, W. (2020). Estimating Mangrove Above-Ground Biomass Using Extreme Gradient Boosting Decision Trees Algorithm with Fused Sentinel-2 and ALOS-2 PALSAR-2 Data in Can Gio Biosphere Reserve, Vietnam. Remote Sensing, 12(5), 777. https://doi.org/10.3390/rs12050777
- Pham, T. D., Yokoya, N., Bui, D. T., Yoshino, K., & Friess, D. A. (2019). Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sensing, 11(3), 230. https://doi.org/10.3390/rs11030230
- Purnamasayangsukasih, P. R., Norizah, K., Ismail, A. A. M., & Shamsudin, I. (2016). A review of uses of satellite imagery in monitoring mangrove forests. IOP Conference Series: Earth and Environmental Science, 37(1), 012034. https://doi.org/10.1088/1755-1315/37/1/012034
- Quang, N. H., Quinn, C. H., Stringer, L. C., Carrie, R., Hackney, C. R., Van Hue, L. T., Van Tan, D., & Nga, P. T. T. (2020). Multi-Decadal Changes in Mangrove Extent, Age and Species in the Red River Estuaries of Viet Nam. Remote Sensing, 12(14), 2289. https://doi.org/10.3390/rs12142289
- Spoto, F., Sy, O., Laberinti, P., Martimort, P., Fernandez, V., Colin, O., Hoersch, B., & Meygret, A. (2012). Overview Of Sentinel-2. 2012 IEEE International Geoscience and Remote Sensing Symposium, 1707–1710. https://doi.org/10.1109/IGARSS.2012.6351195
- Steininger, M. K., Tucker, C. J., Townshend, J. R. G., Killeen, T. J., Desch, A., Bell, V., & Ersts, P. (2001). Tropical deforestation in the Bolivian Amazon. Environmental Conservation, 28(2), 127–134. https://doi.org/10.1017/S0376892901000133
- Thakur, S., Mondal, I., Ghosh, P. B., Das, P., & De, T. K. (2020). A review of the application of multispectral remote sensing in the study of mangrove ecosystems with special emphasis on image processing techniques. Spatial Information Research, 28(1), 39–51. https://doi.org/10.1007/s41324-019-00268-y
- Tomppo, E., & Katila, M. (1991). Satellite image-based national forest inventory of finland for publication in the igarss’91 digest | IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/579272
- Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231, 111223. https://doi.org/10.1016/j.rse.2019.111223
- Yancho, J. M. M., Jones, T. G., Gandhi, S. R., Ferster, C., Lin, A., & Glass, L. (2020). The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sensing, 12(22), 3758. https://doi.org/10.3390/rs12223758
- Younes Cárdenas, N., Joyce, K. E., & Maier, S. W. (2017). Monitoring mangrove forests: Are we taking full advantage of technology? International Journal of Applied Earth Observation and Geoinformation, 63, 1–14. https://doi.org/10.1016/j.jag.2017.07.004
- Younes, N., Northfield, T. D., Joyce, K. E., Maier, S. W., Duke, N. C., & Lymburner, L. (2020). A Novel Approach to Modelling Mangrove Phenology from Satellite Images: A Case Study from Northern Australia. Remote Sensing, 12(24), 4008. https://doi.org/10.3390/rs12244008
- Zhang, Q., Devers, D., Desch, A., Justice, C. O., & Townshend, J. (2005). Mapping tropical deforestation in Central Africa. Environmental Monitoring and Assessment, 101(1), 69–83. https://doi.org/10.1007/s10661-005-9132-2
- Zhu, Y., Liu, K., W. Myint, S., Du, Z., Li, Y., Cao, J., Liu, L., & Wu, Z. (2020). Integration of GF2 Optical, GF3 SAR, and UAV Data for Estimating Aboveground Biomass of China’s Largest Artificially Planted Mangroves. Remote Sensing, 12(12), 2039. https://doi.org/10.3390/rs12122039