Vol. 54 No. 1 (2025)
Research Articles

El Value and limits of GBIF botanical occurrence data in mapping mangrove cover via the KNN classification of Sentinel-2 images

Julien Andrieu
French Institute of Pondicherry

Published 2025-01-01

Keywords

  • Open Data, Mangrove, Mapping, Accuracy assessment, GBIF

How to Cite

1.
Andrieu J. El Value and limits of GBIF botanical occurrence data in mapping mangrove cover via the KNN classification of Sentinel-2 images. Bol. Investig. Mar. Costeras [Internet]. 2025 Jan. 1 [cited 2025 Jan. 8];54(1). Available from: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1313

Abstract

In the current context, which emphasizes the importance of open-access data, this article aims to conduct the first evaluation of the effectiveness of the Global Biodiversity Information Facility’s (GBIF) database for training open-access multispectral satellite image classifiers to map mangrove extent. Six areas in Australia, Benin, Brazil, Colombia, Malaysia, and the USA were selected for their density of mangrove occurrence data and their proximity to other areas with wooded humid vegetation. Three open-access datasets were used: Sentinel-2 images, Google Earth’s high-resolution viewer, and occurrence data downloaded from the GBIF website. First, a k-nearest neighbors (KNN) algorithm was processed and trained with pixels surrounding the GBIF data. Then, the results were compared to those of an unsupervised classification (K-means). The accuracy of the two methods was assessed using error matrices from a double-blind photointerpretation of very high-resolution images obtained from Google Earth. The KNN algorithm achieved kappa indices ranging from 0.85 to 0.94, very similar to those of the unsupervised method (between 0.95 and 0.96). The GBIF possesses a suitable dataset for areas with information, which is why the community is encouraged to fill the main geographical gaps in its database

Downloads

Download data is not yet available.

References

  1. Andrieu, J. (2018). Land cover changes on the West-African coastline from the Saloum Delta (Senegal) to Rio Geba (Guinea-Bissau) between 1979 and 2015. European Journal of Remote Sensing, 51(1), 314–325. https://doi.org/10.1080/22797254.2018.1432295
  2. Andrieu, J., Cormier Salem, M., Descroix, L., Sané, T., Dièye, E., & Ndour, N. (2018). Correctly assessing forest change in a priority West African mangrove ecosystem: 1986–2010 An answer to Carney et al., 2014 paper “Assessing forest change in a priority West African mangrove ecosystem: 1986–2010.” Remote Sensing Applications: Society and Environment, 13. https://doi.org/10.1016/j.rsase.2018.12.001
  3. Bihamta Toosi, N., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & T. Waser, L. (2020). Land Cover Classification in Mangrove Ecosystems Based on VHR Satellite Data and Machine Learning—An Upscaling Approach. Remote Sensing, 12(17), 2684. https://doi.org/10.3390/rs12172684
  4. Biswas, H., Zhang, K., Ross, M. S., & Gann, D. (2020). Delineation of Tree Patches in a Mangrove-Marsh Transition Zone by Watershed Segmentation of Aerial Photographs. Remote Sensing, 12(13), 2086. https://doi.org/10.3390/rs12132086
  5. Cha, S.-Y., & Park, C.-H. (2007). The Utilization of Google Earth Images as Reference Data for The Multitemporal Land Cover Classification with MODIS Data of North Korea. Korean Journal of Remote Sensing, 23(5), 483–491. https://doi.org/10.7780/kjrs.2007.23.5.483
  6. Cohen, W. B., Spies, T. A., Alig, R. J., Oetter, D. R., Maiersperger, T. K., & Fiorella, M. (2002). Characterizing 23 Years (1972–95) of Stand Replacement Disturbance in Western Oregon Forests with Landsat Imagery. Ecosystems, 5(2), 122–137. https://doi.org/10.1007/s10021-001-0060-X
  7. Darmawan, S., Sari, D. K., Wikantika, K., Tridawati, A., Hernawati, R., & Sedu, M. K. (2020). Identification before-after Forest Fire and Prediction of Mangrove Forest Based on Markov-Cellular Automata in Part of Sembilang National Park, Banyuasin, South Sumatra, Indonesia. Remote Sensing, 12(22), 3700. https://doi.org/10.3390/rs12223700
  8. Dorais, A., & Cardille, J. (2011). Strategies for Incorporating High-Resolution Google Earth Databases to Guide and Validate Classifications: Understanding Deforestation in Borneo. Remote Sensing, 3(6), 1157–1176. https://doi.org/10.3390/rs3061157
  9. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026
  10. Franco-Lopez, H., Ek, A. R., & Bauer, M. E. (2001). Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sensing of Environment, 77(3), 251–274. Scopus. https://doi.org/10.1016/S0034-4257(01)00209-7
  11. Giri, C. (2016). Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sensing, 8(9), 783. https://doi.org/10.3390/rs8090783
  12. Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., & Ellis, A. C. (1998). Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 19(5), 935–956. https://doi.org/10.1080/014311698215801
  13. Heumann, B. W. (2011). Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Progress in Physical Geography: Earth and Environment, 35(1), 87–108. https://doi.org/10.1177/0309133310385371
  14. Hu, T., Zhang, Y., Su, Y., Zheng, Y., Lin, G., & Guo, Q. (2020). Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data. Remote Sensing, 12(10), 1690. https://doi.org/10.3390/rs12101690
  15. Huang, C., Kim, S., Song, K., Townshend, J. R. G., Davis, P., Altstatt, A., Rodas, O., Yanosky, A., Clay, R., Tucker, C. J., & Musinsky, J. (2009). Assessment of Paraguay’s forest cover change using Landsat observations. Global and Planetary Change, 67(1), 1–12. https://doi.org/10.1016/j.gloplacha.2008.12.009
  16. Katila, M., & Tomppo, E. (2001). Selecting estimation parameters for the finnish multisource national forest inventory. Remote Sensing of Environment, 76(1), 16–32. Scopus. https://doi.org/10.1016/S0034-4257(00)00188-7
  17. Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing, 3(5), 878–928. https://doi.org/10.3390/rs3050878
  18. Lombard, F., Soumaré, S., Andrieu, J., & Josselin, D. (2023). Mangrove zonation mapping in West Africa, at 10-m resolution, optimized for inter-annual monitoring. Ecological Informatics, 102027. https://doi.org/10.1016/j.ecoinf.2023.102027
  19. Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., & Merchant, J. W. (2000). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6–7), 1303–1330. https://doi.org/10.1080/014311600210191
  20. Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., & Worthy, L. D. (2006). Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105(2), 142–154. https://doi.org/10.1016/j.rse.2006.06.018
  21. Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review. Complex & Intelligent Systems, 7(6), 2797–2818. https://doi.org/10.1007/s40747-021-00457-z
  22. McRoberts, R. E., Nelson, M. D., & Wendt, D. G. (2002). Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sensing of Environment, 82(2–3), 457–468. Scopus. https://doi.org/10.1016/S0034-4257(02)00064-0
  23. Nababa, I. I., Symeonakis, E., Koukoulas, S., Higginbottom, T. P., Cavan, G., & Marsden, S. (2020). Land Cover Dynamics and Mangrove Degradation in the Niger Delta Region. Remote Sensing, 12(21), 3619. https://doi.org/10.3390/rs12213619
  24. Pham, T. D., Le, N. N., Ha, N. T., Nguyen, L. V., Xia, J., Yokoya, N., To, T. T., Trinh, H. X., Kieu, L. Q., & Takeuchi, W. (2020). Estimating Mangrove Above-Ground Biomass Using Extreme Gradient Boosting Decision Trees Algorithm with Fused Sentinel-2 and ALOS-2 PALSAR-2 Data in Can Gio Biosphere Reserve, Vietnam. Remote Sensing, 12(5), 777. https://doi.org/10.3390/rs12050777
  25. Pham, T. D., Yokoya, N., Bui, D. T., Yoshino, K., & Friess, D. A. (2019). Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sensing, 11(3), 230. https://doi.org/10.3390/rs11030230
  26. Purnamasayangsukasih, P. R., Norizah, K., Ismail, A. A. M., & Shamsudin, I. (2016). A review of uses of satellite imagery in monitoring mangrove forests. IOP Conference Series: Earth and Environmental Science, 37(1), 012034. https://doi.org/10.1088/1755-1315/37/1/012034
  27. Quang, N. H., Quinn, C. H., Stringer, L. C., Carrie, R., Hackney, C. R., Van Hue, L. T., Van Tan, D., & Nga, P. T. T. (2020). Multi-Decadal Changes in Mangrove Extent, Age and Species in the Red River Estuaries of Viet Nam. Remote Sensing, 12(14), 2289. https://doi.org/10.3390/rs12142289
  28. Spoto, F., Sy, O., Laberinti, P., Martimort, P., Fernandez, V., Colin, O., Hoersch, B., & Meygret, A. (2012). Overview Of Sentinel-2. 2012 IEEE International Geoscience and Remote Sensing Symposium, 1707–1710. https://doi.org/10.1109/IGARSS.2012.6351195
  29. Steininger, M. K., Tucker, C. J., Townshend, J. R. G., Killeen, T. J., Desch, A., Bell, V., & Ersts, P. (2001). Tropical deforestation in the Bolivian Amazon. Environmental Conservation, 28(2), 127–134. https://doi.org/10.1017/S0376892901000133
  30. Thakur, S., Mondal, I., Ghosh, P. B., Das, P., & De, T. K. (2020). A review of the application of multispectral remote sensing in the study of mangrove ecosystems with special emphasis on image processing techniques. Spatial Information Research, 28(1), 39–51. https://doi.org/10.1007/s41324-019-00268-y
  31. Tomppo, E., & Katila, M. (1991). Satellite image-based national forest inventory of finland for publication in the igarss’91 digest | IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/579272
  32. Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231, 111223. https://doi.org/10.1016/j.rse.2019.111223
  33. Yancho, J. M. M., Jones, T. G., Gandhi, S. R., Ferster, C., Lin, A., & Glass, L. (2020). The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sensing, 12(22), 3758. https://doi.org/10.3390/rs12223758
  34. Younes Cárdenas, N., Joyce, K. E., & Maier, S. W. (2017). Monitoring mangrove forests: Are we taking full advantage of technology? International Journal of Applied Earth Observation and Geoinformation, 63, 1–14. https://doi.org/10.1016/j.jag.2017.07.004
  35. Younes, N., Northfield, T. D., Joyce, K. E., Maier, S. W., Duke, N. C., & Lymburner, L. (2020). A Novel Approach to Modelling Mangrove Phenology from Satellite Images: A Case Study from Northern Australia. Remote Sensing, 12(24), 4008. https://doi.org/10.3390/rs12244008
  36. Zhang, Q., Devers, D., Desch, A., Justice, C. O., & Townshend, J. (2005). Mapping tropical deforestation in Central Africa. Environmental Monitoring and Assessment, 101(1), 69–83. https://doi.org/10.1007/s10661-005-9132-2
  37. Zhu, Y., Liu, K., W. Myint, S., Du, Z., Li, Y., Cao, J., Liu, L., & Wu, Z. (2020). Integration of GF2 Optical, GF3 SAR, and UAV Data for Estimating Aboveground Biomass of China’s Largest Artificially Planted Mangroves. Remote Sensing, 12(12), 2039. https://doi.org/10.3390/rs12122039