Vol. 49 Núm. 1 (2020)
Articulos de investigación

Long-term coral colonization by an excavating Caribbean sponge mediated by heavy surge

Ángela Marulanda-Gómez
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
Mateo López-Victoria
Pontificia Universidad Javeriana Cali
Sven Zea
Instituto de Estudios en Ciencias del Mar (Cecimar), Universidad Nacional de Colombia, sede Caribe

Publicado 2020-07-16

Versiones

Palabras clave

  • Cliona tenuis,
  • Acropora palmata,
  • Coral colonization,
  • Bioerosion,
  • Storms

Cómo citar

1.
Marulanda-Gómez Ángela, López-Victoria M, Zea S. Long-term coral colonization by an excavating Caribbean sponge mediated by heavy surge. Bol. Investig. Mar. Costeras [Internet]. 16 de julio de 2020 [citado 23 de diciembre de 2024];49(1):101-12. Disponible en: https://boletin.invemar.org.co/ojs/index.php/boletin/article/view/906

Resumen

Dead Acropora palmata branches colonized by the excavating sponge Cliona tenuis are prone to dislodgement, breakage, and translocation during heavy surge from storms or hurricanes, favoring the dispersion of this sponge. At Islas del Rosario (Colombia, Caribbean), adult C. tenuis carried by A. palmata fragments that fell onto live massive corals were able to colonize the new coral, subsequently killing live tissue of the newly infected coral. Corals that recruited onto fallen A. palmata branches overgrown with adult C. tenuis were also invaded once the sponge reached their base. To determine if the incidence of this phenomenon has increased since 2002 when it was first documented, the prevalence and mode of colonization of corals by adult C. tenuis was again quantified in 2014 on the same reef. Although a trend is difficult to infer from two surveys, the number of coral colonies colonized by C. tenuis doubled by 2014, and new cases of colonization from sponge-carrying A. palmata branches were found. However, the frequency of colonization by adult sponges from A. palmata branches in 2014 was one-half to one-fifth lower than in 2002, demonstrating that other forms of colonization onto massive corals may be increasing, or that storms erase the evidence of adult colonization by translocating vector coral branches, as was observed in one longitudinally-monitored case of transmission. As time passes and the fragmentation and erosion of the reef increases, the evidence of colonization of stony corals by C. tenuis through A. palmata branches vanishes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Aronson, R.B., W. Precht, M. Toscano and K.H. Koltes. 2002. The 1998 bleaching event and its aftermath on a coral reef in Belize. Mar. Biol., 141(3): 435-447.
  2. Blake, E.S., T.B. Kimberlain, R.J. Berg, J.P. Cangialosi and J.L. Beven II. 2013. Tropical cyclone report: Hurricane Sandy. NHC, 12: 1-10.
  3. Carballo, J.L., E. Bautista-Guerrero and G.E. Leyte-Morales. 2008. Boring sponges and the modeling of coral reefs in the east Pacific Ocean. Mar. Ecol. Prog. Ser., 356: 113-122.
  4. Chaves-Fonnegra, A. and S. Zea. 2011. Coral colonization by the encrusting excavating Caribbean sponge Cliona delitrix. Mar. Ecol., 32(2): 62-173.
  5. Cortés, J., M.M. Murillo, H.M, Guzmán y J. Acuña. 1984. Pérdida de zooxantelas y muerte de corales y otros organismos arrecifales en el Caribe y Pacífico de Costa Rica. Rev. Biol. Trop., 32(2): 227-231.
  6. Glynn, P.W. and M.W. Colgan. 1992. Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the eastern Pacific. Am. Zool., 32: 707-718.
  7. González‑Rivero, M., Y.M. Bozec, I. Chollett, R. Ferrari, C.H.L. Schönberg and P.J. Mumby. 2016. Asymmetric competition prevents the outbreak of an opportunistic species after coral reef degradation. Oecologia, 181(1): 161-173.
  8. Goreau, T.F. and W.D. Hartmann. 1963. Boring sponges as controlling factors in the formation and maintenance of coral reefs: In: Soggnaes, R.F. (Ed.), Mechanisms of hard tissue destruction. Publ. Am. Assoc. Adv. Sci., 75: 25-54.
  9. Knutson, T.R. and R.E. Tuleya. 2004. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Clim., 17(18): 3477-3495.
  10. Lirman, D. 2000. Fragmentation in the branching coral Acropora palmata (Lamarck): Growth, survivorship, and reproduction of colonies and fragments. J. Exp. Mar. Biol. Ecol., 251: 41-57
  11. López-Victoria, M. and S. Zea. 2004. Storm-mediated coral colonization by an excavating Caribbean sponge. Clim. Res., 26(3): 251-256.
  12. López-Victoria, M. and S. Zea. 2005. Current trends of space occupation by encrusting excavating sponges on Colombian coral reefs. Mar. Ecol., 26(1): 33-41.
  13. López-Victoria, M., S. Zea and E. Weil. 2003. New aspects on the biology of the encrusting excavating sponges Cliona aprica, Cliona caribbaea and Cliona sp. Boll. Mus. Ist. Biol. Univ. Genova, 68: 425-432.
  14. López-Victoria, M., S. Zea and E. Weil. 2006. Competition for space between encrusting excavating Caribbean sponges and other coral reef organisms. Mar. Ecol. Prog. Ser., 312: 113-121.
  15. Márquez, J.C. and S. Zea. 2012. Parrotfish mediation in coral mortality and bioerosion by the encrusting, excavating sponge Cliona tenuis. Mar. Ecol., 33(4): 417-426.
  16. Márquez, J.C., S. Zea and M. López-Victoria. 2006. Is competition for space between the encrusting excavating sponge Cliona tenuis and corals influenced by higher-than-normal temperatures? Bol. Invest. Mar. Cost., 35(1): 259-265.
  17. Marulanda-Gómez, A., M. López-Victoria and S. Zea. 2017. Coral take over by the encrusting excavating Caribbean sponge Cliona tenuis has reached a standstill at Islas del Rosario Archipelago (Colombia). Mar. Ecol., 38(1): e12379.
  18. R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: www.r-project.org.
  19. Rogers, C.S., T.H. Suchanek and F.A. Pecora. 1982. Effects of Hurricanes David and Frederic (1979) on shallow Acropora palmata reef communities: St. Croix, US Virgin Islands. Bull. Mar. Sci., 32: 532-548.
  20. Royero, J.C.O. 2012. Exposure of the Colombian Caribbean coast, including San Andrés Island, to tropical storms and hurricanes, 1900-2010. Nat. Hazards., 61(2): 815-827.
  21. Rützler, K. 2002. Impact of crustose clionid sponges on Caribbean reef corals. Acta Geol. Hisp., 37(1): 61-72.
  22. Schönberg, C.H.L. and J.C. Ortiz. 2008. Is sponge bioerosion increasing? In: Proc. 11th Int. Coral Reef Symp., 7-11.
  23. Tunnicliffe, V. 1979. The role of boring sponges in coral fracture. In: Lévi, C. and N. Boury-Esnault (Eds.). Biologie des spongiaires. Coll. Int. CNRS, 291: 309-315.
  24. Ward-Paige, C.A., M.J. Risk, O.A. Sherwood and W.C. Jaap. 2005. Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Mar. Poll. Bull., 51(5): 570-579.
  25. Williams, E.H., P. Bartels and L. Bunkley‐Williams. 1999. Predicted disappearance of coral‐reef ramparts: a direct result of major ecological disturbances. Glob. Change Biol., 5(8): 839-845.
  26. Zea, S. and E. Weil. 2003. Taxonomy of the Caribbean excavating sponge species complex Cliona caribaea - C. aprica - C. langae (Porifera, Hadromerida, Clionaidae). Caribb. J. Sci., 39(3): 348-370.