Sandy beach area estimation through open access satellite information: A calibration for the coast of Montevideo, Uruguay

Published 2023-06-15
Keywords
- coastal erosion,
- ecosystem management,
- Landsat,
- open access,
- sandy beach
How to Cite
Copyright (c) 2023 Luis Orlando

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
Sandy beaches provide a variety of ecosystem services that support human well-being at coastal areas. These ecosystems are highly dynamic and primarily defined by the interaction between waves, tides and wind regimes. High variability makes beaches vulnerable to physical modifications and climate change, jeopardizing ecosystems functions. This has resulted in accelerated erosion rates and
ecological degradation with widespread socioeconomic implications. Coastal dynamic analysis is a data demanding process that requires long term monitoring programs; this study applies an open access methodology to the Landsat collection in order to estimate beach area. This informative variable can help elucidate coastal dynamics, ecosystem attributes and touristic potential. Sand (through Random forest classification) and vegetation (through a threshold of the normalized difference vegetation index) were considered as components of the beach ecosystem. The method was calibrated for the Montevideo coast by testing results against independent estimations of beach area,
the area of 20 beaches of the Montevideo coast was estimated for a 35 years’ period. This methodology can be applied anywhere at a very low operational cost, potentially multiplying the available information and allowing better management on the pressing matters of coastal dynamics and sandy beach use.
Downloads
References
- Amyot, J. and J. Grant. 2014. Environmental function analysis: A decision support tool for integrated sandy beach planning. Ocean Coast Manag, 102: 317–327. https://doi.org/10.1016/j.ocecoaman.2014.10.009
- Barnard, P.L., D.M. Hubbard and J.E. Dugan. 2012. Beach response dynamics of a littoral cell using a 17-year single-point time series of sand thickness. Geomorphology 140: 588–598. https://doi.org/10.1016/j.geomorph.2011.12.023
- Barnard, P.L., A.D. Short, M.D. Harley, K.D. Splinter, S. Vitousek, I.L. Turner, J. Allan, M. Banno, K.R. Bryan, A. Doria, J.E. Hansen, S. Kato, Y. Kuriyama, P. Randall-Goodwin, P. Ruggiero, I.J. Walker and D.K. Heathfield. 2015. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci., 8: 801.
- Boak, E. and I. Turner. 2005. Shoreline definition and detection: A review. J. Coast. Res., 21: 688–703. https://doi.org/10.2112/03-0071.1
- Breiman, L. 2001. Random forests. Mach Learn, 45: 5–32.
- Brieuc, M.S.O., C.D. Waters, D.P. Drinan and K.A. Naish. 2018. A practical introduction to Random Forest for genetic association studies in ecology and evolution. Mol. Ecol. Resour., 18(4): 755–766. https://doi.org/10.1111/1755-0998.12773
- César de Sá, N., S. Carvalho, P. Castro, E., Marchante and H. Marchante. 2017. Using Landsat time series to understand how management and disturbances influence the expansion of an invasive tree. IEEE J. Sel. Topics App. Earth Obs. Rem. Sens., 10(7): 3243–3253.
- Cifuentes Ossa, M.A., L.V. Rosero Henao y J.J. Selvaraj. 2017. Detección de cambios de la línea costera al norte del distrito de Buenaventura mediante el uso de sensores remotos. Bol. Invest. Mar. Costeras, 46. https://doi.org/10.25268/bimc.invemar.2017.46.1.719
- Defeo, O. and M. Elliott. 2020. The ‘triple whammy’ of coasts under threat – Why we should be worried! Mar. Pollut. Bull., 111832. https://doi.org/10.1016/j.marpolbul.2020.111832
- Defeo, O., A. McLachlan, D.S. Schoeman, T.A. Schlacher, J. Dugan, A. Jones, M. Lastra and F. Scapini. 2009. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci., 81: 1–12. https://doi.org/10.1016/j.ecss.2008.09.022
- García-Alonso, J., D. Lercari, B.F. Araujo, M.G. Almeida and C.E. Rezende.2017. Total and extractable elemental composition of the intertidal estuarine biofilm of the Río de la Plata: Disentangling natural and anthropogenic influences. Estuar. Coast. Shelf Sci., 187: 53–61. https://doi.org/10.1016/j.ecss.2016.12.018
- Gao, B. 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Rem. Sens. Environ., 58: 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
- Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau and R. Moore. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Rem. Sens. Environ., 202: 18–27. https://doi.org/10.1016/j.rse.2017.06.031
- Gutiérrez, O. 2010. Dinámica sedimentaria en la costa uruguaya: evolución y tendencias de playas urbanas en el marco del Cambio Global. Tesis Magíster Ciencias Ambientales, UdelaR, Montevideo. 98 p. https://doi.org/10.13140/RG.2.1.1904.4568
- Gutiérrez, O., D. Panario, G.J. Nagy, G. Piñeiro and C. Montes. 2015. Long-term morphological evolution of urban pocket beaches in Montevideo (Uruguay): Impacts of coastal interventions and links to climate forcing. J. Integr. Coast. Zone Manag., 15: 467-484. https://doi.org/10.5894/rgci553
- Gutiérrez, O., D. Panario, G.J. Nagy, M. Bidegain and C. Montes. 2016. Climate teleconnections and indicators of coastal systems response. Ocean Coast. Manag., 122: 64–76. https://doi.org/10.1016/j.ocecoaman.2016.01.009
- Harley, M.D., I.L Turner, A.D. Short and R. Ranasinghe. 2010. Assessment and integration of conventional, RTK-GPS and image-derived beach survey methods for daily to decadal coastal monitoring. Coast. Eng, 58: 194–205. https://doi.org/10.1016/j.coastaleng.2010.09.006
- Harris, L., R. Nel and D. Schoeman. 2011. Mapping beach morphodynamics remotely: A novel application tested on South African sandy shores. Estuar. Coast. Shelf Sci., 92: 78–89. https://doi.org/10.1016/j.ecss.2010.12.013
- Jensen, J.R. 2005. Introductory digital image processing: A remote sensing perspective. Prentice Hall, Upper Saddle River. 512 p.
- Lercari, D. and O. Defeo. 2015. Large-scale dynamics of sandy beach ecosystems in transitional waters of the southwestern Atlantic Ocean: Species turnover, stability and spatial synchrony. Estuar. Coast. Shelf Sci., 154: 184–193. https://doi.org/10.1016/j.ecss.2015.01.011
- Luijendijk, A., G. Hagenaars, R. Ranasinghe, F. Baart, G. Donchyts and S. Aarninkhof. 2018. The state of the world’s beaches. Sci. Rep., 8: 6641. https://doi.org/10.1038/s41598-018-24630-6
- McLachlan, A. and O. Defeo. 2018. The ecology of sandy shores. Academic Press, London. 542 p. https://doi.org/10.1016/B978-0-12-809467-9.00001-1
- McLachlan, A., O. Defeo, E. Jaramillo and A.D. Short. 2013. Sandy beach conservation and recreation: Guidelines for optimizing management strategies for multi-purpose use. Ocean Coast. Manag., 71: 256–268. https://doi.org/10.1016/j.ocecoaman.2012.10.005
- McLachlan, A., O. Defeo and A.D. Short. 2018. Characterizing sandy beaches into major types and states: Implications for ecologists and managers. Estuar. Coast. Shelf Sci., 215: 152–160. https://doi.org/10.1016/j.ecss.2018.09.027
- Millard, K. and M. Richardson. 2015. On the importance of training data sample selection in Random Forest image classification: A case study in peatland ecosystem mapping. Rem. Sens., 7: 8489–8515.
- Orlando, L. 2020. BeachAreaMontevideo1984_2019 [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4327667
- Orlando, L., L. Ortega and O. Defeo. 2019. Multi-decadal variability in sandy beach area and the role of climate forcing. Estuar. Coast. Shelf Sci., 218: 197–203. https://doi.org/10.1016/j.ecss.2018.12.015
- Orlando, L., L. Ortega and O. Defeo. 2020. Urbanization effects on sandy beach macrofauna along an estuarine gradient. Ecol. Ind., 111: 106036. https://doi.org/10.1016/j.ecolind.2019.106036
- Orlando, L., L. Ortega and O. Defeo. 2021. Perspectives for sandy beach management in the Anthropocene: Satellite information, tourism seasonality, and expert recommendations. Estuar. Coast. Shelf Sci., 107597. https://doi.org/10.1016/j.ecss.2021.107597
- Ozturk, D. and F. Sesli. 2015. Shoreline change analysis of the Kizilirmak Lagoon series. Ocean Coast. Manag., 118: 290–308. https://doi.org/10.1016/j.ocecoaman.2015.03.009
- R Development Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://cran.r-project.org/ 8/09/2020.
- Sepúlveda, H.H., A. Valle-Levinson and M.B. Framiñán. 2004. Observations of subtidal and tidal flow in the Rı́o de la Plata Estuary. Cont. Shelf Res., 24:509–525. https://doi.org/10.1016/j.csr.2003.12.002
- Short, A.D. 1999. Beach and shoreface morphodynamics. Wiley, Chichester. 379 p.
- Short, A.D. and D.W.T. Jackson. 2013. Beach morphodynamics: 106-129. In: Treatise on Geomorphology. Academic Press, San Diego.
- Simionato, C.G., M.L. Clara Tejedor, C. Campetella, R. Guerrero and D. Moreira. 2010. Patterns of sea surface temperature variability on seasonal to subannual scales at and offshore the Río de la Plata estuary. Cont. Shelf Res., 30: 1983–1997. https://doi.org/10.1016/j.csr.2010.09.012
- Splinter, K.D., I.L. Turner and M.A. Davidson. 2013. How much data is enough? The importance of morphological sampling interval and duration for calibration of empirical shoreline models. Coast. Eng., 77: 14–27. https://doi.org/10.1016/j.coastaleng.2013.02.009
- Takimoto, G. and D.M. Post. 2013. Environmental determinants of food-chain length: a meta-analysis. Ecol. Res., 28: 675–681. https://doi.org/10.1007/s11284-012-0943-7
- Verocai, J.E., M. Gómez-Erache, G.J. Nagy and M. Bidegain. 2015. Addressing climate extremes in Coastal Management: The case of the Uruguayan coast of the Rio de la Plata System. J. Integr. Coast. Zone Manag., 15:91-107. https://doi.org/10.5894/rgci555
- Vos, K., M.D. Harley, K.D. Splinter, J.A. Simmons and I.L. Turner. 2019. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng., 150: 160–174. https://doi.org/10.1016/j.coastaleng.2019.04.004