Impact of automatic feeding on soil quality in Litopenaeus vannamei cultivation

Authors

  • Erick Méndez Macias 1Facultad de Ciencias Naturales, Universidad de Guayaquil, 090601 Guayaquil, Ecuador
  • Geovanna Parra Riofrio Facultad de Ciencias Naturales, Universidad de Guayaquil, 090601 Guayaquil, Ecuador

DOI:

https://doi.org/10.25268/bimc.invemar.2024.53.2.1315

Keywords:

organic matter, organic carbon, pH, C/N

Abstract

OOne of the most important aspects for sustainable aquaculture is the proper management of feed, for which the best strategy is the implementation of automatic feeders that allow optimizing feed rations and optimizing productive performance. The present study evaluated the impact of automatic feeding on soil quality in the cultivation of Litopenaeus vannamei in three experimental pools
in a period of three months; where were evaluated the amount of organic matter, organic carbon, pH, nitrogen and the carbon-nitrogen ratio (C/N) to evaluate if there are differences in the feeding and lung-type zones. In the final analyzes no statistical differences (p ≥ 0.05) were
observed in the parameters between the feeding areas and between the pools. These results demonstrate that automatic feeding does not cause changes in soil quality in the cultivation of L. vannamei.

Dimensions

PlumX

Visitas

115

Downloads

Download data is not yet available.

References

Acebo Plaza, M., M. Álvarez, F.Marcillo, J. Rodríguez, S. Menéndez y J. Quijano. 2018. Orientación estratégica para la toma de decisiones. Industria de Acuicultura. Ecuador. Esc. Superior Politécnica del Litoral.

Anna, A. and K. Dinesh.. 2021. Feasibility study and seasonal variations in physico-chemical parameters of water and soil quality analysis and management of the Vannamei shrimp farms in Kerala, India. Int. J. Fish. Aquat. Stud., 9(6): 113-119.

Beltrán, M. 2017. Innovación en el sector acuícola. Ra Ximhai, 13(3): 351-364.

Boyd, C.E. 1995. Bottom soils sediment, and pond aquaculture. Springer, New York.

Boyd, C.E., G. Treece, R.C.Engle, D. Valderrama, C.R. Lightner, C.R. Pantoja, J. Fox, D. Sánchez, S. Otwell, L. Garrido y V. Garrido. 2001. Consideraciones sobre la calidad del agua y del suelo en cultivos de camarón. Métodos para mejorar la camaronicultura en Centroamérica, 30 p.

Castro, J. y A. Ordinola. 2021. La estrategia de ayuno y realimentación, una alternativa viable para optimizar el consumo de alimento balanceado en el cultivo semi-intensivo de camarón blanco Litopenaeus vannamei. Rev. Inv. Vet. Perú, 32(5): e19546.

Davies, B. 1974. Loss-’on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. J. Proc., 38(1): 150-151.

Gilbert, R. 2021. Sistemas de alimentación: Cómo evitar la degradación del alimento en la alimentación automatizada con sistemas neumáticos. Aqua Feed, 24(2): 42-45.

Gonzabay, A., H. Vite, V Garzón y P. Quizhpe. 2021. Análisis de la producción de camarón en el Ecuador para su exportación a la Unión Europea en el período 2015-2020. Pol. Con., 6(62), 1-9. https://dialnet.unirioja.es/servlet/articulo?codigo=8094522

Guevara, Y., R. Terán, A. Achicanoy e Y. Maigual. 2022. Implementación de nuevas tecnologías en la acuicultura. REVIP, 8(1). https://doi.org/10.22267/revip.2181.27

Islam, M., M. Tarek, M Bhuyan and H. Zamal. 2016. Assessment of soil quality of coastal shrimp culture pond at Chakaria, Cox’s Bazar. J. Asiat. Soc. Bangladesh Sci., 42(1), 21-27.

Jewel, M., M. Haque, M Rahman, M Khatun, S Akter and M. Bhuyain M. 2021. Shrimp polyculture: An economically viable and environmentally friendly farming system in low saline coastal region of Bangladesh. Iran. J. Fish. Sci., 20(6): 1649 -1663.

Juárez, J., J. Ponce, A. Román, E. Otazo, G. Pulido, Y. Marmolejo, R. Tapia y M. Benítez. 2021. Factores técnicos del manejo de la calidad agua y sedimento en policultivo camarón-tilapia en piscinas. Rev. MVZ Córdoba, 27(1): e2147.

López, J. 2016. Desarrollo de indicadores de sostenibilidad para la maricultura del Ecuador. Rev. Int. Inv. y Doc.. 1: 20-32.

Kjeldahl, J. 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z Anal Chem. 22 (1): 366-383.

Mustafa, A., O. Hishamuddin and C. Boyd, 2018. Physical and chemical characteristics of soil from tiger shrimp aquaculture pond at Malacca, Malaysia. J. App. Aqua. 30(1): 47-72

Panigrahi, A., C. Saranya, M. Sundaram, S. Kannan, R. Das, R. Kumar, P. Rajesh and S. Otta, S. 2018. Carbon: Nitrogen (C/N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish Shellfish Immunol. , 81(1), 329-337.

Pelletier, M., D. Campbell, K. Ho, R. Burgess, C. Audette and N. Detenbeck. 2011. Can sediment total organic carbon and grain size be used to diagnose organic enrichment in estuaries? Environ. Toxicol. Chem. , 30(3): 538–547.

Poersch, L., W. Bauer, M. Kersanach, M and W. Wasielesky. 2020. Assessment of trace metals, total organic carbon and total nitrogen of a shrimp farm system in southern Brazil. Reg. Stud. Mar. Sci., 101452. doi:10.1016/j.rsma.2020.101452

Rojas, L., V. Tique y J. Bocanegra, J. 2017. Uso de herramientas tecnológicas en la producción piscícola: Una revisión sistemática de literatura. Rev. Ing., Inv. Desar., 17(2), 47-57.

Skoog, D., F. Holler y T. Nieman. 1992. Principios de análisis instrumental (Quinta edición): Mc Graw Hill

Vásquez, W., M. Ingae e I. Betalleluz. 2022. Inteligencia artificial en acuicultura: fundamentos, aplicaciones y perspectivas futuras. Scient. Agropec., 13(1), 79-96.

Vinothkumar, R., A. Sen, A and M. Srinivasan. 2018. Analysis of bottom soil quality parameters of shrimp pond culture in modified extensive method. JETIR, 5(7): 123-126.

Xu, W., T. Morris and T. Samocha. 2016. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453(1): 169-175.

Xu, W., G. Wen, H. Su, Y. Xu, X. Hu and Y. Cao. 2022. Effect of input C/N ratio on bacterial community of water biofloc and shrimp gut in a commercial zeroeExchange system with intensive production of Penaeus vannamei. Microorganisms, 10(1): 1060.

Zhu, Z., X. Lin, J. Pan and Z. Xu. 2016. Effect of cyclical feeding on compensatory growth, nitrogen and phosphorus budgets in juvenile Litopenaeus vannamei. Aquac. Res., 47(1): 283-289.

FAO. 2020. El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. Roma. https://doi.org/10.4060/ca9229es.

Published

2024-07-02

How to Cite

1.
Méndez Macias E, Parra Riofrio G. Impact of automatic feeding on soil quality in Litopenaeus vannamei cultivation. Bol. Investig. Mar. Costeras [Internet]. 2024 Jul. 2 [cited 2024 Nov. 21];53(2):133-42. Available from: http://boletin.invemar.org.co/ojs/index.php/boletin/article/view/1315
سرور مجازی ایران Decentralized Exchange

Issue

Section

Research Articles

Similar Articles

You may also start an advanced similarity search for this article.

فروشگاه اینترنتی