Valor y límites de los datos de registro botánico de la GBIF en el mapeo de la extensión de manglar mediante la clasificación KNN de imágenes de Sentinel-2
Contenido principal del artículo
Resumen
En el contexto actual, que enfatiza la importancia de los datos de acceso abierto, este artículo busca realizar la primera evaluación de la efectividad de la base de datos de la Global Biodiversity Information Facility (GBIF) para entrenar clasificadores de imágenes satelitales multiespectrales de acceso abierto con el fin cartografiar la extensión de manglares. Se eligieron seis áreas en Australia, Benín, Brasil, Colombia, Malasia y EEUU por su densidad de datos de presencia de manglar y su proximidad con otras áreas de vegetación boscosa húmeda. Se utilizaron tres conjuntos de datos de acceso abierto: imágenes Sentinel-2, el visualizador de alta resolución de Google Earth y datos de presencia descargados del sitio de la GBIF. En primer lugar, se procesó un algoritmo de k-vecinos más cercanos (KNN), entrenándolo con píxeles circundantes de los datos de la GBIF. Luego, se compararon los resultados con los de una clasificación no supervisada (K-means). La exactitud de los dos métodos se evaluó mediante matrices de error de un proceso de fotointerpretación doble-ciego de imágenes de muy alta resolución obtenidas de Google Earth. El algoritmo KNN obtuvo índices kappa de 0.85 a 0.94, muy similares a los del método no supervisado (de 0.95 a 0.96). La GBIF posee un conjunto de datos adecuado para lugares con información, por lo que se invita a la comunidad a llenar los principales vacíos geográficos en su base de datos.
Detalles del artículo
Número
Sección

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Cómo citar
Referencias
Andrieu, J. (2018). Land cover changes on the West-African coastline from the Saloum Delta (Senegal) to Rio Geba (Guinea-Bissau) between 1979 and 2015. European Journal of Remote Sensing, 51(1), 314–325. https://doi.org/10.1080/22797254.2018.1432295
Andrieu, J., Cormier Salem, M., Descroix, L., Sané, T., Dièye, E., & Ndour, N. (2018). Correctly assessing forest change in a priority West African mangrove ecosystem: 1986–2010 An answer to Carney et al., 2014 paper “Assessing forest change in a priority West African mangrove ecosystem: 1986–2010.” Remote Sensing Applications: Society and Environment, 13. https://doi.org/10.1016/j.rsase.2018.12.001
Bihamta Toosi, N., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & T. Waser, L. (2020). Land Cover Classification in Mangrove Ecosystems Based on VHR Satellite Data and Machine Learning—An Upscaling Approach. Remote Sensing, 12(17), 2684. https://doi.org/10.3390/rs12172684
Biswas, H., Zhang, K., Ross, M. S., & Gann, D. (2020). Delineation of Tree Patches in a Mangrove-Marsh Transition Zone by Watershed Segmentation of Aerial Photographs. Remote Sensing, 12(13), 2086. https://doi.org/10.3390/rs12132086
Cha, S.-Y., & Park, C.-H. (2007). The Utilization of Google Earth Images as Reference Data for The Multitemporal Land Cover Classification with MODIS Data of North Korea. Korean Journal of Remote Sensing, 23(5), 483–491. https://doi.org/10.7780/kjrs.2007.23.5.483
Cohen, W. B., Spies, T. A., Alig, R. J., Oetter, D. R., Maiersperger, T. K., & Fiorella, M. (2002). Characterizing 23 Years (1972–95) of Stand Replacement Disturbance in Western Oregon Forests with Landsat Imagery. Ecosystems, 5(2), 122–137. https://doi.org/10.1007/s10021-001-0060-X
Darmawan, S., Sari, D. K., Wikantika, K., Tridawati, A., Hernawati, R., & Sedu, M. K. (2020). Identification before-after Forest Fire and Prediction of Mangrove Forest Based on Markov-Cellular Automata in Part of Sembilang National Park, Banyuasin, South Sumatra, Indonesia. Remote Sensing, 12(22), 3700. https://doi.org/10.3390/rs12223700
Dorais, A., & Cardille, J. (2011). Strategies for Incorporating High-Resolution Google Earth Databases to Guide and Validate Classifications: Understanding Deforestation in Borneo. Remote Sensing, 3(6), 1157–1176. https://doi.org/10.3390/rs3061157
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026
Franco-Lopez, H., Ek, A. R., & Bauer, M. E. (2001). Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sensing of Environment, 77(3), 251–274. Scopus. https://doi.org/10.1016/S0034-4257(01)00209-7
Giri, C. (2016). Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sensing, 8(9), 783. https://doi.org/10.3390/rs8090783
Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., & Ellis, A. C. (1998). Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 19(5), 935–956. https://doi.org/10.1080/014311698215801
Heumann, B. W. (2011). Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Progress in Physical Geography: Earth and Environment, 35(1), 87–108. https://doi.org/10.1177/0309133310385371
Hu, T., Zhang, Y., Su, Y., Zheng, Y., Lin, G., & Guo, Q. (2020). Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data. Remote Sensing, 12(10), 1690. https://doi.org/10.3390/rs12101690
Huang, C., Kim, S., Song, K., Townshend, J. R. G., Davis, P., Altstatt, A., Rodas, O., Yanosky, A., Clay, R., Tucker, C. J., & Musinsky, J. (2009). Assessment of Paraguay’s forest cover change using Landsat observations. Global and Planetary Change, 67(1), 1–12. https://doi.org/10.1016/j.gloplacha.2008.12.009
Katila, M., & Tomppo, E. (2001). Selecting estimation parameters for the finnish multisource national forest inventory. Remote Sensing of Environment, 76(1), 16–32. Scopus. https://doi.org/10.1016/S0034-4257(00)00188-7
Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing, 3(5), 878–928. https://doi.org/10.3390/rs3050878
Lombard, F., Soumaré, S., Andrieu, J., & Josselin, D. (2023). Mangrove zonation mapping in West Africa, at 10-m resolution, optimized for inter-annual monitoring. Ecological Informatics, 102027. https://doi.org/10.1016/j.ecoinf.2023.102027
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., & Merchant, J. W. (2000). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6–7), 1303–1330. https://doi.org/10.1080/014311600210191
Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., & Worthy, L. D. (2006). Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105(2), 142–154. https://doi.org/10.1016/j.rse.2006.06.018
Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review. Complex & Intelligent Systems, 7(6), 2797–2818. https://doi.org/10.1007/s40747-021-00457-z
McRoberts, R. E., Nelson, M. D., & Wendt, D. G. (2002). Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sensing of Environment, 82(2–3), 457–468. Scopus. https://doi.org/10.1016/S0034-4257(02)00064-0
Nababa, I. I., Symeonakis, E., Koukoulas, S., Higginbottom, T. P., Cavan, G., & Marsden, S. (2020). Land Cover Dynamics and Mangrove Degradation in the Niger Delta Region. Remote Sensing, 12(21), 3619. https://doi.org/10.3390/rs12213619
Pham, T. D., Le, N. N., Ha, N. T., Nguyen, L. V., Xia, J., Yokoya, N., To, T. T., Trinh, H. X., Kieu, L. Q., & Takeuchi, W. (2020). Estimating Mangrove Above-Ground Biomass Using Extreme Gradient Boosting Decision Trees Algorithm with Fused Sentinel-2 and ALOS-2 PALSAR-2 Data in Can Gio Biosphere Reserve, Vietnam. Remote Sensing, 12(5), 777. https://doi.org/10.3390/rs12050777
Pham, T. D., Yokoya, N., Bui, D. T., Yoshino, K., & Friess, D. A. (2019). Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sensing, 11(3), 230. https://doi.org/10.3390/rs11030230
Purnamasayangsukasih, P. R., Norizah, K., Ismail, A. A. M., & Shamsudin, I. (2016). A review of uses of satellite imagery in monitoring mangrove forests. IOP Conference Series: Earth and Environmental Science, 37(1), 012034. https://doi.org/10.1088/1755-1315/37/1/012034
Quang, N. H., Quinn, C. H., Stringer, L. C., Carrie, R., Hackney, C. R., Van Hue, L. T., Van Tan, D., & Nga, P. T. T. (2020). Multi-Decadal Changes in Mangrove Extent, Age and Species in the Red River Estuaries of Viet Nam. Remote Sensing, 12(14), 2289. https://doi.org/10.3390/rs12142289
Spoto, F., Sy, O., Laberinti, P., Martimort, P., Fernandez, V., Colin, O., Hoersch, B., & Meygret, A. (2012). Overview Of Sentinel-2. 2012 IEEE International Geoscience and Remote Sensing Symposium, 1707–1710. https://doi.org/10.1109/IGARSS.2012.6351195
Steininger, M. K., Tucker, C. J., Townshend, J. R. G., Killeen, T. J., Desch, A., Bell, V., & Ersts, P. (2001). Tropical deforestation in the Bolivian Amazon. Environmental Conservation, 28(2), 127–134. https://doi.org/10.1017/S0376892901000133
Thakur, S., Mondal, I., Ghosh, P. B., Das, P., & De, T. K. (2020). A review of the application of multispectral remote sensing in the study of mangrove ecosystems with special emphasis on image processing techniques. Spatial Information Research, 28(1), 39–51. https://doi.org/10.1007/s41324-019-00268-y
Tomppo, E., & Katila, M. (1991). Satellite image-based national forest inventory of finland for publication in the igarss’91 digest | IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/579272
Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231, 111223. https://doi.org/10.1016/j.rse.2019.111223
Yancho, J. M. M., Jones, T. G., Gandhi, S. R., Ferster, C., Lin, A., & Glass, L. (2020). The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sensing, 12(22), 3758. https://doi.org/10.3390/rs12223758
Younes Cárdenas, N., Joyce, K. E., & Maier, S. W. (2017). Monitoring mangrove forests: Are we taking full advantage of technology? International Journal of Applied Earth Observation and Geoinformation, 63, 1–14. https://doi.org/10.1016/j.jag.2017.07.004
Younes, N., Northfield, T. D., Joyce, K. E., Maier, S. W., Duke, N. C., & Lymburner, L. (2020). A Novel Approach to Modelling Mangrove Phenology from Satellite Images: A Case Study from Northern Australia. Remote Sensing, 12(24), 4008. https://doi.org/10.3390/rs12244008
Zhang, Q., Devers, D., Desch, A., Justice, C. O., & Townshend, J. (2005). Mapping tropical deforestation in Central Africa. Environmental Monitoring and Assessment, 101(1), 69–83. https://doi.org/10.1007/s10661-005-9132-2
Zhu, Y., Liu, K., W. Myint, S., Du, Z., Li, Y., Cao, J., Liu, L., & Wu, Z. (2020). Integration of GF2 Optical, GF3 SAR, and UAV Data for Estimating Aboveground Biomass of China’s Largest Artificially Planted Mangroves. Remote Sensing, 12(12), 2039. https://doi.org/10.3390/rs12122039