El Value and limits of GBIF botanical occurrence data in mapping mangrove cover via the KNN classification of Sentinel-2 images

Main Article Content

Julien Andrieu

Abstract

In the current context, which emphasizes the importance of open-access data, this article aims to conduct the first evaluation of the effectiveness of the Global Biodiversity Information Facility’s (GBIF) database for training open-access multispectral satellite image classifiers to map mangrove extent. Six areas in Australia, Benin, Brazil, Colombia, Malaysia, and the USA were selected for their density of mangrove occurrence data and their proximity to other areas with wooded humid vegetation. Three open-access datasets were used: Sentinel-2 images, Google Earth’s high-resolution viewer, and occurrence data downloaded from the GBIF website. First, a k-nearest neighbors (KNN) algorithm was processed and trained with pixels surrounding the GBIF data. Then, the results were compared to those of an unsupervised classification (K-means). The accuracy of the two methods was assessed using error matrices from a double-blind photointerpretation of very high-resolution images obtained from Google Earth. The KNN algorithm achieved kappa indices ranging from 0.85 to 0.94, very similar to those of the unsupervised method (between 0.95 and 0.96). The GBIF possesses a suitable dataset for areas with information, which is why the community is encouraged to fill the main geographical gaps in its database

Article Details

Section

Research Articles

How to Cite

1.
El Value and limits of GBIF botanical occurrence data in mapping mangrove cover via the KNN classification of Sentinel-2 images. Bol. Investig. Mar. Costeras [Internet]. 2025 Jan. 1 [cited 2026 Jan. 12];54(1). Available from: https://boletin.invemar.org.co/index.php/boletin/article/view/1313

References

Andrieu, J. (2018). Land cover changes on the West-African coastline from the Saloum Delta (Senegal) to Rio Geba (Guinea-Bissau) between 1979 and 2015. European Journal of Remote Sensing, 51(1), 314–325. https://doi.org/10.1080/22797254.2018.1432295

Andrieu, J., Cormier Salem, M., Descroix, L., Sané, T., Dièye, E., & Ndour, N. (2018). Correctly assessing forest change in a priority West African mangrove ecosystem: 1986–2010 An answer to Carney et al., 2014 paper “Assessing forest change in a priority West African mangrove ecosystem: 1986–2010.” Remote Sensing Applications: Society and Environment, 13. https://doi.org/10.1016/j.rsase.2018.12.001

Bihamta Toosi, N., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & T. Waser, L. (2020). Land Cover Classification in Mangrove Ecosystems Based on VHR Satellite Data and Machine Learning—An Upscaling Approach. Remote Sensing, 12(17), 2684. https://doi.org/10.3390/rs12172684

Biswas, H., Zhang, K., Ross, M. S., & Gann, D. (2020). Delineation of Tree Patches in a Mangrove-Marsh Transition Zone by Watershed Segmentation of Aerial Photographs. Remote Sensing, 12(13), 2086. https://doi.org/10.3390/rs12132086

Cha, S.-Y., & Park, C.-H. (2007). The Utilization of Google Earth Images as Reference Data for The Multitemporal Land Cover Classification with MODIS Data of North Korea. Korean Journal of Remote Sensing, 23(5), 483–491. https://doi.org/10.7780/kjrs.2007.23.5.483

Cohen, W. B., Spies, T. A., Alig, R. J., Oetter, D. R., Maiersperger, T. K., & Fiorella, M. (2002). Characterizing 23 Years (1972–95) of Stand Replacement Disturbance in Western Oregon Forests with Landsat Imagery. Ecosystems, 5(2), 122–137. https://doi.org/10.1007/s10021-001-0060-X

Darmawan, S., Sari, D. K., Wikantika, K., Tridawati, A., Hernawati, R., & Sedu, M. K. (2020). Identification before-after Forest Fire and Prediction of Mangrove Forest Based on Markov-Cellular Automata in Part of Sembilang National Park, Banyuasin, South Sumatra, Indonesia. Remote Sensing, 12(22), 3700. https://doi.org/10.3390/rs12223700

Dorais, A., & Cardille, J. (2011). Strategies for Incorporating High-Resolution Google Earth Databases to Guide and Validate Classifications: Understanding Deforestation in Borneo. Remote Sensing, 3(6), 1157–1176. https://doi.org/10.3390/rs3061157

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026

Franco-Lopez, H., Ek, A. R., & Bauer, M. E. (2001). Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sensing of Environment, 77(3), 251–274. Scopus. https://doi.org/10.1016/S0034-4257(01)00209-7

Giri, C. (2016). Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sensing, 8(9), 783. https://doi.org/10.3390/rs8090783

Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., & Ellis, A. C. (1998). Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 19(5), 935–956. https://doi.org/10.1080/014311698215801

Heumann, B. W. (2011). Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Progress in Physical Geography: Earth and Environment, 35(1), 87–108. https://doi.org/10.1177/0309133310385371

Hu, T., Zhang, Y., Su, Y., Zheng, Y., Lin, G., & Guo, Q. (2020). Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data. Remote Sensing, 12(10), 1690. https://doi.org/10.3390/rs12101690

Huang, C., Kim, S., Song, K., Townshend, J. R. G., Davis, P., Altstatt, A., Rodas, O., Yanosky, A., Clay, R., Tucker, C. J., & Musinsky, J. (2009). Assessment of Paraguay’s forest cover change using Landsat observations. Global and Planetary Change, 67(1), 1–12. https://doi.org/10.1016/j.gloplacha.2008.12.009

Katila, M., & Tomppo, E. (2001). Selecting estimation parameters for the finnish multisource national forest inventory. Remote Sensing of Environment, 76(1), 16–32. Scopus. https://doi.org/10.1016/S0034-4257(00)00188-7

Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing, 3(5), 878–928. https://doi.org/10.3390/rs3050878

Lombard, F., Soumaré, S., Andrieu, J., & Josselin, D. (2023). Mangrove zonation mapping in West Africa, at 10-m resolution, optimized for inter-annual monitoring. Ecological Informatics, 102027. https://doi.org/10.1016/j.ecoinf.2023.102027

Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., & Merchant, J. W. (2000). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6–7), 1303–1330. https://doi.org/10.1080/014311600210191

Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., & Worthy, L. D. (2006). Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105(2), 142–154. https://doi.org/10.1016/j.rse.2006.06.018

Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review. Complex & Intelligent Systems, 7(6), 2797–2818. https://doi.org/10.1007/s40747-021-00457-z

McRoberts, R. E., Nelson, M. D., & Wendt, D. G. (2002). Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sensing of Environment, 82(2–3), 457–468. Scopus. https://doi.org/10.1016/S0034-4257(02)00064-0

Nababa, I. I., Symeonakis, E., Koukoulas, S., Higginbottom, T. P., Cavan, G., & Marsden, S. (2020). Land Cover Dynamics and Mangrove Degradation in the Niger Delta Region. Remote Sensing, 12(21), 3619. https://doi.org/10.3390/rs12213619

Pham, T. D., Le, N. N., Ha, N. T., Nguyen, L. V., Xia, J., Yokoya, N., To, T. T., Trinh, H. X., Kieu, L. Q., & Takeuchi, W. (2020). Estimating Mangrove Above-Ground Biomass Using Extreme Gradient Boosting Decision Trees Algorithm with Fused Sentinel-2 and ALOS-2 PALSAR-2 Data in Can Gio Biosphere Reserve, Vietnam. Remote Sensing, 12(5), 777. https://doi.org/10.3390/rs12050777

Pham, T. D., Yokoya, N., Bui, D. T., Yoshino, K., & Friess, D. A. (2019). Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sensing, 11(3), 230. https://doi.org/10.3390/rs11030230

Purnamasayangsukasih, P. R., Norizah, K., Ismail, A. A. M., & Shamsudin, I. (2016). A review of uses of satellite imagery in monitoring mangrove forests. IOP Conference Series: Earth and Environmental Science, 37(1), 012034. https://doi.org/10.1088/1755-1315/37/1/012034

Quang, N. H., Quinn, C. H., Stringer, L. C., Carrie, R., Hackney, C. R., Van Hue, L. T., Van Tan, D., & Nga, P. T. T. (2020). Multi-Decadal Changes in Mangrove Extent, Age and Species in the Red River Estuaries of Viet Nam. Remote Sensing, 12(14), 2289. https://doi.org/10.3390/rs12142289

Spoto, F., Sy, O., Laberinti, P., Martimort, P., Fernandez, V., Colin, O., Hoersch, B., & Meygret, A. (2012). Overview Of Sentinel-2. 2012 IEEE International Geoscience and Remote Sensing Symposium, 1707–1710. https://doi.org/10.1109/IGARSS.2012.6351195

Steininger, M. K., Tucker, C. J., Townshend, J. R. G., Killeen, T. J., Desch, A., Bell, V., & Ersts, P. (2001). Tropical deforestation in the Bolivian Amazon. Environmental Conservation, 28(2), 127–134. https://doi.org/10.1017/S0376892901000133

Thakur, S., Mondal, I., Ghosh, P. B., Das, P., & De, T. K. (2020). A review of the application of multispectral remote sensing in the study of mangrove ecosystems with special emphasis on image processing techniques. Spatial Information Research, 28(1), 39–51. https://doi.org/10.1007/s41324-019-00268-y

Tomppo, E., & Katila, M. (1991). Satellite image-based national forest inventory of finland for publication in the igarss’91 digest | IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/579272

Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231, 111223. https://doi.org/10.1016/j.rse.2019.111223

Yancho, J. M. M., Jones, T. G., Gandhi, S. R., Ferster, C., Lin, A., & Glass, L. (2020). The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sensing, 12(22), 3758. https://doi.org/10.3390/rs12223758

Younes Cárdenas, N., Joyce, K. E., & Maier, S. W. (2017). Monitoring mangrove forests: Are we taking full advantage of technology? International Journal of Applied Earth Observation and Geoinformation, 63, 1–14. https://doi.org/10.1016/j.jag.2017.07.004

Younes, N., Northfield, T. D., Joyce, K. E., Maier, S. W., Duke, N. C., & Lymburner, L. (2020). A Novel Approach to Modelling Mangrove Phenology from Satellite Images: A Case Study from Northern Australia. Remote Sensing, 12(24), 4008. https://doi.org/10.3390/rs12244008

Zhang, Q., Devers, D., Desch, A., Justice, C. O., & Townshend, J. (2005). Mapping tropical deforestation in Central Africa. Environmental Monitoring and Assessment, 101(1), 69–83. https://doi.org/10.1007/s10661-005-9132-2

Zhu, Y., Liu, K., W. Myint, S., Du, Z., Li, Y., Cao, J., Liu, L., & Wu, Z. (2020). Integration of GF2 Optical, GF3 SAR, and UAV Data for Estimating Aboveground Biomass of China’s Largest Artificially Planted Mangroves. Remote Sensing, 12(12), 2039. https://doi.org/10.3390/rs12122039

Similar Articles

You may also start an advanced similarity search for this article.