Intercalibración de ecosondas científicas (EK60 y EK80) para la evaluación acústica multiplataforma de anchoveta en Chile
Contenido principal del artículo
Resumen
Los cruceros hidroacústicos son claves para evaluar especies pelágicas como la anchoveta (Engraulis ringens) en el Sistema de la Corriente de Humboldt (SCH), una de las pesquerías más importantes de Chile. Las variaciones oceanográficas afectan las condiciones ambientales y la distribución del recurso, especialmente cerca de la costa. Existe una brecha en la cobertura acústica en zonas costeras debido a limitaciones operativas del buque de investigación, lo que restringe la representatividad espacial de las evaluaciones hidroacústicas recurrentes. Para mejorar la cobertura en estas áreas, se han incorporado embarcaciones artesanales con ecosondas EK80, que pueden operar donde el buque principal tiene menor acceso. Este estudio evaluó la comparabilidad y precisión de mediciones acústicas obtenidas con ecosondas EK80 en embarcaciones artesanales cerqueras y con una ecosonda EK60 a bordo del buque de investigación Abate Molina, durante evaluaciones hidroacústicas realizadas entre 2022 y 2024. Se aplicaron modelos de Mínimos Cuadrados Generalizados para analizar la energía retrodispersada (NASC, 38 kHz), y se estimaron cocientes medios de densidades acústicas (Rᵢ) como factores de intercalibración para corregir diferencias sistemáticas. Los resultados evidenciaron una alta correspondencia entre las mediciones, con diferencias en biomasa ajustadas inferiores a 5,5 % y sin cambios significativos en los coeficientes de variación, lo que confirma la robustez del procedimiento. Estos hallazgos respaldan el uso conjunto de multiplataformas para fortalecer la gestión sostenible de la pesca de anchoveta.
Detalles del artículo
Número
Sección

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Cómo citar
Referencias
Adekeye, K. (2013). Process capability indices based on median absolute deviation. International Journal of Applied Science and Technology, 3(4), p. 6. Available at: https://ijastnet.com/journals/Vol_3_No_4_April_2013/5.pdf.
Alheit, J. and Ñiquen, M. (2004). Regime shifts in the Humboldt Current ecosystem. Progress in Oceanography, 60(2–4), pp 201–222. doi: https://doi.org/10.1016/j.pocean.2004.02.006.
Andersen, L.N. (2001). The new Simrad EK60 scientific echo sounder system. The Journal of the Acoustical Society of America, 109(5_Supplement), pp. 2336–2336. doi: https://doi.org/10.1121/1.4744207.
Annasawmy, P., Horne, J. K., Reiss, C. S., Cutter, G. R. and Macaulay, G. J. (2024). Field comparison of Antarctic krill (Euphausia superba) backscatter and aggregation types using NORTEK and SIMRAD echosounders. ICES Journal of Marine Science. Edited by O.R. Godo, p. fsae093. doi: https://doi.org/10.1093/icesjms/fsae093.
Arel-Bundock, V. (2022). modelsummary: Data and Model Summaries in R. Journal of Statistical Software, 103(1). doi: https://doi.org/10.18637/jss.v103.i01.
Armas, E., Arancibia, H., Neira, S. and Marín, M. C. (2024). Neural network approach for detecting spatial changes in catch probability of Engraulis ringens during El Niño-Southern Oscillation events in northern Chile. Fisheries Oceanography, 33(4). doi: https://doi.org/10.1111/fog.12672.
Bertrand, A., Segura, M., Gutiérrez, M. and Vásquez, L. (2004). From small‐scale habitat loopholes to decadal cycles: a habitat‐based hypothesis explaining fluctuation in pelagic fish populations off Peru. Fish and Fisheries, 5(4), pp. 296–316. doi: https://doi.org/10.1111/j.1467-2679.2004.00165.x.
Canales, C. M., Adasme, N. A., Cubillos, L. A., Cuevas, M. J., Sánchez, N. and Kuparinen, A. (2018). Long-time spatio-temporal variations in anchovy Engraulis ringens biological traits off northern Chile: An adaptive response to long-term environmental change?’ ICES Journal of Marine Science, 75(6), pp. 1908–1923. doi: https://doi.org/10.1093/icesjms/fsy082.
Carrera, P. (2015). Estudio de la dinámica de poblaciones pelágicas de peces mediante técnicas hidroacústicas. Centro Oceanográfico de Vigo [Preprint]. Available at: https://agris.fao.org/search/en/providers/122367/records/647480adbf943c8c79887ca3
Castillo, J., Saavedra, A., Leiva, F., La Cruz, L., Alegría, N., Núñez, S., Silva, J. y Sepúlveda, A. (2022). Estimación de la fuerza de blanco (TS) para las unidades demográficas de anchoveta a nivel nacional 2020-2019. Instituto de Fomento Pesquero, p. 170. Available at: https://www.subpesca.cl/fipa/613/articles-116770_informe_final.pdf.
Castillo, P., Peña, C., Grados, D., La Cruz, L., Valdez, C., Pozada-Herrera, M. and Cornejo, R. (2022). Characteristics of anchoveta Engraulis ringens schools in the optimum zone and the physiological stress zone of its distribution between 2011 and 2021. Fisheries Oceanography, 31(5), pp. 510–523. doi: https://doi.org/10.1111/fog.12601.
Castillo, P., Bouchón, M., Vásquez, L., Cuadros, G., Grados, D., Valdez, C. and Pozada-Herrera, M. (2025). Behaviour and size distribution of anchoveta Engraulis ringens under El Niño 2023 in the Northern Humboldt Current System. Scientia Marina, 89(1), p. e097. doi: https://doi.org/10.3989/scimar.05547.097.
Cerna, F., Gómez, M., Moyano, G., Plaza, G. and Morales-Nin, B. (2022). Spatial and inter-annual changes in the growth patterns of young-of-year anchovy in a high productive ecosystem. Fisheries Research, 249, p. 106236. doi: https://doi.org/10.1016/j.fishres.2022.106236.
Chander, G., Hewison, T. J., Fox, N., Wu, X., Xiong, X. and Blackwell, W. J. (2013). Overview of intercalibration of satellite instruments. IEEE Transactions on Geoscience and Remote Sensing, 51(3), pp. 1056–1080. doi: https://doi.org/10.1109/TGRS.2012.2228654.
Cotter, A. (2001). Intercalibration of North Sea International Bottom Trawl Surveys by fitting year-class curves. ICES Journal of Marine Science, 58(3), pp. 622–632. doi: https://doi.org/10.1006/jmsc.2001.1068.
Cuadros Caballero, G. R., Castillo, P. R., La Cruz, L., Valdez, C., Peña, C., Chacón, G., Escudero, L. and Salcedo, J. (2024). Variabilidad de la anchoveta Engraulis ringens entre febrero y junio en la zona restringida a la pesca industrial en el inicio la primera temporada de pesca del 2022. Boletín de Investigaciones Marinas y Costeras, 53(1), pp. 145–166. doi: https://doi.org/10.25268/bimc.invemar.2024.53.1.1246.
De Robertis, A. and Handegard, N.O. (2013). Fish avoidance of research vessels and the efficacy of noise-reduced vessels: a review. ICES Journal of Marine Science, 70(1), pp. 34–45. doi: https://doi.org/10.1093/icesjms/fss155.
De Robertis, A., Lawrence-Slavas, N., Jenkins, R., Wangen, I., Mordy, C. W., Meinig, C., Levine, M., Peacock, D. and Tabisola, H. (2019). Long-term measurements of fish backscatter from Saildrone unmanned surface vehicles and comparison with observations from a noise-reduced research vessel. ICES Journal of Marine Science. 76(7), pp. 2459–2470. doi: https://doi.org/10.1093/icesjms/fsz124.
Demer, D., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., Domokos, R., Dunford, A., Fässler, S., Gauthier, S., Hufnagle, L., Jech, M., Bouffant, N., Lebourges-Dhaussy, A., Lurton, X., Macaulay, G., Perrot, P., Ryan, T., Parker-Stetter, S., … Williamson, N. (2015). Calibration of acoustic instruments. International Council for the Exploration of the Sea (ICES) (ICES), p.133. doi: https://doi.org/10.17895/ICES.PUB.5494.
Demer, D., Andersen, L., Bassett, C., Berger, L., Chu, D., Condiotty, J., Hutton, B., Korneliussen, R., Bouffant, N. L., Macaulay, G. and others. (2017). 2016 USA–Norway EK80 Workshop Report: Evaluation of a wideband echosounder for fisheries and marine ecosystem science. ICES Cooperative Research Re-port No. 336, p. 69. doi: https://doi.org/10.17895/ices.pub.2318.
Doray, M. (2021). ICES Survey Protocols. Manual for acoustic surveys coordinated under ICES Working Group on Acoustic and Egg Surveys for Small Pelagic Fish (WGACEGG). ICES Techniques in Marine Environmental Sciences, 64, p. 100. doi: https://doi.org/10.17895/ICES.PUB.7462.
FAO (2024). El estado de la seguridad alimentaria y la nutrición en el mundo 2024. FAO; IFAD; WHO; WFP; UNICEF. doi: https://doi.org/10.4060/cd1254es.
Foote, K., Knudsen, F., Vestnes, G., MacLennan, D. and Simmonds, J. (1987). Calibration of acoustic instruments for fish density estimation: a practical guide. International Council for the Exploration of the Sea, Cooperative Research Report, (144), p. 72. doi: https://courses.washington.edu/fish538/resources/CRR%20144%20acoustic%20calibration.pdf.
Ganias, K. (2014). Biology and ecology of sardines and anchovies. Boca Raton: CRC Press, Taylor & Francis Group. doi: https://doi.org/10.1201/b16682.
Garcés, C., Niklitschek, E.J., Plaza, G., Cerna, F., Leisen, M., Toledo, P. and Barra, F. (2019). Anchoveta Engraulis ringens along the Chilean coast: Management units, demographic units and water masses: Insights from multiple otolith‐based approaches. Fisheries Oceanography, 28(6), pp.735–750. doi: https://doi.org/10.1111/fog.12455
Gawarkiewicz, G. and Malek Mercer, A. (2019). Partnering with fishing fleets to monitor ocean conditions. Annual Review of Marine Science, 11(1), pp. 391–411. doi: https://doi.org/10.1146/annurev-marine-010318-095201.
Gerlotto, F., Castillo, J., Saavedra, A., Barbieri, M. A., Espejo, M. and Cotel, P. (2004). Three-dimensional structure and avoidance behaviour of anchovy and common sardine schools in central southern Chile. ICES Journal of Marine Science, pp. 1120–1126. doi: https://doi.org/10.1016/j.icesjms.2004.07.017.
Gutiérrez, M., Vásquez, C., Peraltilla, S., Aliaga, A., Zuzunaga, A., Méndez, E., Yarlequé, E. and Munaylla, U. (2016). Notes on Peruvian experience on acoustic data collection. South Pacific Regional Fisheries Management Organization. 4 th Meeting of the Scientific Committee. doi: https://sprfmo.int/assets/Meetings/Meetings-2013-plus/SC-Meetings/4th-SC-Meeting-2016/SC04-papers/f4c3b97152/SC-04-26-Notes-on-Peruvian-Experience-on-Acoustic-Data-Collection-v2.pdf.
Hernández-Santoro, C., Landaeta, M.F. and Castillo Pizarro, J. (2019). Effect of ENSO on the distribution and concentration of catches and reproductive activity of anchovy Engraulis ringens in northern Chile. Fisheries Oceanography, 28(3), pp. 241–255. doi: https://doi.org/10.1111/fog.12405.
Hilborn, R. (2003). The state of the art in stock assessment: where we are and where we are going. Scientia Marina, 67(S1), pp. 15–20. doi: https://doi.org/10.3989/scimar.2003.67s115.
ICES (2015). SISP 9 Manual for International Pelagic Surveys (IPS) - Version 1.00. Series of ICES Survey Protocols SISP 9 – IPS. p. 92. doi: https://doi.org/10.17895/ICES.PUB.7582.
IFOP (2025). Chilean scientific vessels. Valparaíso: IFOP, 13 mayo 2021. Instituto de Fomento Pesquero. Available at: https://www.ifop.cl/en/buques-cientificos-chilenos/ (Accessed: 25 June 2025).
Ladroit, Y., Escobar-Flores, P. C., Schimel, A. C. G. and O’Driscoll, R. L. (2020). ESP3: An open-source software for the quantitative processing of hydro-acoustic data. SoftwareX, 12, p. 100581. Available at: https://doi.org/10.1016/j.softx.2020.100581.
Leonori, I., Tičina, V., De Felice, A., Vidjak, O., Grubišić, L. and Pallaoro, A. (2012). Comparisons of two research vessels’ properties in the acoustic surveys of small pelagic fish. Acta Adriatica, 53(3), pp. 389–398. Available at: https://acta.izor.hr/ojs/index.php/acta/article/view/306.
Macaulay, G. J., Scoulding, B., Ona, E. and Fässler, S. M. M. (2018). Comparisons of echo-integration performance from two multiplexed echosounders. ICES Journal of Marine Science. Edited by D. Demer, 75(6), pp. 2276–2285. doi: https://doi.org/10.1093/icesjms/fsy111.
MacLennan, D.N. (1990). Acoustical measurement of fish abundance. The Journal of the Acoustical Society of America, 87(1), pp. 1–15. doi: https://doi.org/10.1121/1.399285.
MacLennan, D. and Pope, J. (1983). Analysis procedure for the inter-ship calibration of echo integrators. International Council for the Exploration of the Sea, p. 11. doi: https://www.ices.dk/sites/pub/CM%20Doccuments/1983/B/1983_B22.pdf.
MacLennan, D., Fernandes, P. and Dalen, J. (2002). A consistent approach to definitions and symbols in fisheries acoustics. ICES Journal of Marine Science, 59(2), pp. 365–369. doi: https://doi.org/10.1006/jmsc.2001.1158.
Manso-Narvarte, I., Solabarrieta, L., Caballero, A., Anabitarte, A., Knockaert, C., Dhondt, C. A. L. and Fernandes-Salvador, J. A. (2024). Fishing vessels as met-ocean data collection platforms: data lifecycle from acquisition to sharing. Frontiers in Marine Science, 11, p. 1467439. doi: https://doi.org/10.3389/fmars.2024.1467439.
Massé, J., Uriarte, A., Angélico, M., Carrera, P. and Eds. (2018). Pelagic survey series for sardine and anchovy in ICES subareas 8 and 9? Towards an ecosystem approach. ICES Cooperative Research Reports (CRR), 332, p. 268. doi: https://doi.org/10.17895/ICES.PUB.4599.
Melvin, G.D., Kloser, R. and Honkalehto, T. (2016). The adaptation of acoustic data from commercial fishing vessels in resource assessment and ecosystem monitoring. Fisheries Research, 178, pp. 13–25. doi: https://doi.org/10.1016/j.fishres.2015.09.010.
Ñiquen, M. and Bouchon, M. (2004). Impact of El Niño events on pelagic fisheries in Peruvian Waters. Deep Sea Research Part II: Topical Studies in Oceanography, 51(6–9), pp. 563–574. doi: https://doi.org/10.1016/j.dsr2.2004.03.001.
Pinheiro, J. and Bates, D. (2000). Mixed-Effects Models in S and S-PLUS. New York: Springer-Verlag (Statistics and Computing). doi: https://doi.org/10.1007/b98882.
Robotham, H. and Castillo, J. (1990). The bootstrap method: an alternative for estimating confidence intervals of resources surveyed by hydroacoustic techniques. Rapp. P.-v. Reun. Cons. Int. Explor. Mer, 189, pp. 421–424. doi: https://cienciasbasicas.udp.cl/cms/wp-content/uploads/2019/06/32.pdf.
Robotham, H., Bosch, P., Gutiérrez-Estrada, J. C., Castillo, J. and Pulido-Calvo, I. (2010). Acoustic identification of small pelagic fish species in Chile using support vector machines and neural networks. Fisheries Research, 102(1–2), pp. 115–122. doi: https://doi.org/10.1016/j.fishres.2009.10.015.
Røttingen, I. (1978). Field intercalibrations of echo integrator systems. International Council for the Exploration of the Sea (ICES CM Documents;1978/B:25), p. 23. Available at: https://imr.brage.unit.no/imr-mlui/bitstream/handle/11250/103307/CM_1978_B_25.pdf?sequence=1.
R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/
Silva, C., Andrade, I., Yáñez, E., Hormazabal, S., Barbieri, M. Á., Aranis, A. and Böhm, G. (2016). Predicting habitat suitability and geographic distribution of anchovy Engraulis ringens due to climate change in the coastal areas off Chile. Progress in Oceanography, 146, pp. 159–174. doi: https://doi.org/10.1016/j.pocean.2016.06.006.
Simmonds, J. and MacLennan, D. (2005). Fisheries acoustics: theory and practice. 2nd ed. Oxford; Ames, Iowa: Wiley-Blackwell (Fish and aquatic resources series, 10). doi: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470995303?msockid=27319c98976d69550ca088559680688f.
Simmonds, J., Toresen, R., Pedersen, J. P. and Götze, E. (1998). Inter-calibration of participating vessels in the ICES coordinated surveys of North Sea herring. International Council for the Exploration of the Sea [Preprint]. doi: https://www.vliz.be/imisdocs/publications/ocrd/275731.pdf.
Swart, S., Zietsman, J., Coetzee, J., Goslett, D., Hoek, A., Needham, D. and Monteiro, P. (2016). Ocean robotics in support of fisheries research and management. African Journal of Marine Science, 38(4), pp. 525–538. doi: https://doi.org/10.2989/1814232X.2016.1251971.
Zhu, Y., Kenji, M., Tokeshi, T., Nishiyama, Y., Kasai, A., Matsuura, M., Horie, H. and Miyashita, K. (2024). Calibration of commercial fisheries echo sounders using seabed backscatter for the estimation of fishery resources. PLOS ONE. Edited by V.H.R. Paiva, 19(5), p. e0301689. doi: https://doi.org/10.1371/journal.pone.0301689